<output id="qn6qe"></output>

    1. <output id="qn6qe"><tt id="qn6qe"></tt></output>
    2. <strike id="qn6qe"></strike>

      亚洲 日本 欧洲 欧美 视频,日韩中文字幕有码av,一本一道av中文字幕无码,国产线播放免费人成视频播放,人妻少妇偷人无码视频,日夜啪啪一区二区三区,国产尤物精品自在拍视频首页,久热这里只有精品12

      ENGG5301 Information Theory 2025 Midterm Exam P3:Causal Encoding

      題目為回憶版,解答是 GPT-5 寫的。

      考試時(shí) (1) 問就想偏了,考后看到 GPT-5 的答案很氣,不等式想不到直接 (1)(2)(3) 連跪,搞的 (4)(5) 問也沒做。

      從初中就開始爛完的不等式水平又發(fā)力了,但這課確實(shí)沒啥心思去刷教材/習(xí)題,符合預(yù)期。

      Problem

      Let random variables \(X_1,\dots,X_n\) be i.i.d. with distribution \(p_X\).

      We define an encoding sequence \(M_1,\dots,M_n\) subject to the following causality constraints:

      • \(M_i\) is a function of \(X_1,\dots,X_i\), i.e., \(M_i = f_i(X_1,\dots,X_i)\);
      • \(X_i\) is a function of \(M_1,\dots,M_i\), i.e., \(X_i = g_i(M_1,\dots,M_i)\).

      Answer the following:

      1. Find the minimum value of \(\sum_{i=1}^n H(M_i)\) in terms of \(p_X\).

      2. Show that, under the optimal encoding, \(M_1,\dots,M_n\) are mutually independent.

      3. Show that, under the optimal encoding, \(H(M_i \mid X_i) = 0\).

      4. If we drop optimality but require causal encoding and prefix-free constraint , show that there exists an encoding such that

        \[\mathbb{E}\!\left(\frac{1}{n}\sum_{i=1}^n L(M_i)\right) < H(p_X) + 1. \]

      5. Under the same causal and prefix-free constraint, show that for any \(\varepsilon>0\), there exists an encoding such that

        \[\mathbb{E}\!\left(\frac{1}{n}\sum_{i=1}^n L(M_i)\right) < H(p_X) + \varepsilon. \]


      Solution

      (a) Minimum of \(\sum_i H(M_i)\) under optimal encoding

      Result:

      \[\min \sum_{i=1}^n H(M_i) = n\,H(p_X). \]

      Proof:

      By the data processing inequality and lossless reconstruction,

      \[H(X_1,\dots,X_n) \le H(M_1,\dots,M_n) \le \sum_{i=1}^n H(M_i). \]

      Since \(X_1,\dots,X_n\) are i.i.d.,

      \[H(X_1,\dots,X_n) = n H(X). \]

      Thus,

      \[\sum_{i=1}^n H(M_i) \ge n H(X). \]

      Choosing \(M_i=f(X_i)\), i.e., encoding each symbol separately, achieves \(H(M_i)=H(X)\) and satisfies both causality and recoverability, hence the bound is tight.


      (b) Independence of \(M_1,\dots,M_n\) under optimal encoding

      Result:
      Under the optimal encoding, \(M_1,\dots,M_n\) are mutually independent (and thus pairwise independent).

      Proof:

      Equality in part (a) requires that

      \[\sum_{i=1}^n H(M_i) = H(M_1,\dots,M_n). \]

      Equality between the sum of marginal entropies and the joint entropy holds if and only if the variables are mutually independent.
      Hence, the optimal \(M_1,\dots,M_n\) are independent.


      (c) Determinism: \(H(M_i\mid X_i)=0\) under optimal encoding

      Result:
      Under the optimal scheme, \(M_i\) is a deterministic function of \(X_i\).

      Proof:

      From the reconstruction condition,

      \[H(X_i\mid M_1,\dots,M_i) = 0. \]

      Since \(X_i\) is independent of previous messages \((M_1,\dots,M_{i-1})\),

      \[H(X_i\mid M_1,\dots,M_{i-1}) = H(X_i). \]

      Hence the mutual information satisfies

      \[I(X_i; M_i \mid M_1,\dots,M_{i-1}) = H(X_i) - 0 = H(X_i). \]

      On the other hand,

      \[I(X_i; M_i \mid M_1,\dots,M_{i-1}) = H(M_i \mid M_1,\dots,M_{i-1}) - H(M_i \mid X_i, M_1,\dots,M_{i-1}). \]

      Under the optimal encoding, \(H(M_i\mid M_1,\dots,M_{i-1}) = H(X_i)\), so

      \[H(M_i\mid X_i, M_1,\dots,M_{i-1}) = 0. \]

      Because \(M_i\) is independent of \((M_1,\dots,M_{i-1})\), it follows that

      \[H(M_i\mid X_i)=0. \]

      Therefore, each \(M_i\) is a deterministic function of \(X_i\).


      (d) Existence of a causal, prefix-free encoding with average length \(< H(p_X)+1\)

      We want to construct \(M_1,\dots,M_n\) satisfying causality and a prefix-free constraint, such that

      \[\mathbb{E}\Big[\frac{1}{n}\sum_{i=1}^n L(M_i)\Big] < H(p_X)+1. \]

      Construction (symbol-by-symbol / Huffman coding):

      1. Since \(X_1,\dots,X_n\) are i.i.d., we can encode each symbol independently.
      2. Build a prefix-free code \(C\) (e.g., Huffman code) for \(p_X\).
      3. For each \(i\), set

      \[M_i = C(X_i). \]

      This clearly satisfies causality:

      • \(M_i\) depends on \(X_i\) (and trivially on \(X_1,\dots,X_{i-1}\))
        \(\Rightarrow M_i = g(X_1,\dots,X_i)\).
      • \(X_i\) can be decoded from \(M_i\) alone
        \(\Rightarrow X_i = f(M_1,\dots,M_i)\).

      Average length:

      \[\mathbb{E}[L(M_i)] = \sum_x p_X(x) L(C(x)) = L(C), \quad \forall i. \]

      Hence

      \[\mathbb{E}\Big[\frac{1}{n}\sum_{i=1}^n L(M_i)\Big] = L(C) < H(p_X)+1 \]

      by the standard bound for Huffman coding.

      ? This proves part (d).


      (e) Existence of a causal, prefix-free encoding with average length \(< H(p_X)+\varepsilon\)

      To achieve \(H(p_X)+\varepsilon\), we need block coding.

      1. Treat the whole sequence \(X^n=(X_1,\dots,X_n)\) as a block.
      2. Use an \(n\)-symbol prefix-free code \(C_n\) (e.g., arithmetic coding), which satisfies

      \[H(X^n) \le \mathbb{E}[L(C_n(X^n))] < H(X^n)+1. \]

      Since \(X^n\) is i.i.d.,

      \[H(X^n) = n H(p_X). \]

      1. Implement \(C_n\) sequentially (arithmetic coding can be output symbol by symbol):
      • Let \(M_1,\dots,M_n\) be the incremental outputs, so that

      \[M_1 M_2 \dots M_n = C_n(X^n). \]

      • Then causality is preserved:
        • \(M_i\) depends on \(X_1,\dots,X_i\).
        • \(X_i\) can be recovered from \(M_1,\dots,M_i\).
      1. Average length per symbol:

      \[\mathbb{E}\Big[\frac{1}{n}\sum_{i=1}^n L(M_i)\Big] = \frac{1}{n} \mathbb{E}[L(C_n(X^n))] < \frac{n H(p_X)+1}{n} = H(p_X) + \frac{1}{n}. \]

      1. By choosing \(n > 1/\varepsilon\), we guarantee

      \[\mathbb{E}\Big[\frac{1}{n}\sum_{i=1}^n L(M_i)\Big] < H(p_X) + \varepsilon. \]

      ? This proves part (e).

      posted @ 2025-10-30 17:45  Cold_Chair  閱讀(5)  評(píng)論(0)    收藏  舉報(bào)
      主站蜘蛛池模板: 婷婷五月综合激情| 麻豆国产va免费精品高清在线| 互助| 狠狠久久五月综合色和啪| 亚洲国产日韩一区三区| 新巴尔虎右旗| 国产亚洲精品第一综合| 大香j蕉75久久精品免费8| 日韩V欧美V中文在线| 成人午夜福利视频一区二区| 国内精品久久人妻无码不卡| 大香伊蕉在人线国产av| 国产亚洲一区二区三区四区 | 国产精品久久露脸蜜臀| 国产精品久久久一区二区| 亚洲欧洲av一区二区| 国产成人午夜福利精品| 平塘县| 亚洲国产精品老熟女乱码| 国产一区二区三区导航| 国产粉嫩高中无套进入| 国产日韩精品视频无码| 男人进女人下部全黄大色视频 | 国产精品三级中文字幕| 久久亚洲人成网站| 亚洲精品久久麻豆蜜桃| 亚洲中文字幕一二三四区| 亚洲欧洲日产国无高清码图片 | 欧美精品一区二区在线观看播放| 精品国偷自产在线视频99| 成在人线av无码免费看网站直播| 日本在线a一区视频高清视频| 亚欧成人精品一区二区乱| 亚洲爆乳WWW无码专区| 精品国偷自产在线视频99| 粉嫩av一区二区三区蜜臀| 国产欧美性成人精品午夜| 成人无码一区二区三区网站| 久久被窝亚洲精品爽爽爽| 中文字幕无码视频手机免费看| 国语精品自产拍在线观看网站|