基于多目標優化與混合進化算法的經典約束問題優化MATLAB代碼實現
基于多目標優化與混合進化算法的經典約束問題優化MATLAB代碼實現,整合了IEEE匯刊論文中的核心方法(動態環境適應、約束帕累托前沿平衡等)
一、核心算法
%% 主程序框架(動態多目標約束優化)
clc; clear; close all;
% 參數設置
nVar = 10; % 決策變量維度
nObj = 3; % 目標函數數量
nCon = 2; % 約束數量
popSize = 100;% 種群規模
maxGen = 200; % 最大迭代次數
% 初始化種群
pop = initPopulation(popSize, nVar, nObj);
% 主循環
for gen = 1:maxGen
% 動態環境檢測(參考@ref)
if mod(gen,50)==0
updateDynamicConstraints(); % 更新約束邊界
end
% 混合進化操作
offspring = hybridEvolution(pop);
% 約束處理與帕累托前沿更新(參考@ref)
[pop, front] = handleConstraints(pop, offspring);
% 可視化(3D目標空間)
plotParetoFront(pop.objs(:,1:3));
end
%% 關鍵函數實現
function pop = initPopulation(size, nVar, nObj)
% 初始化種群(帶約束邊界)
pop = struct('x',[], 'objs',[], 'cons',[]);
for i = 1:size
pop(i).x = rand(1,nVar) .* (ub - lb) + lb; % lb/ub為全局邊界
[pop(i).objs, pop(i).cons] = evaluate(pop(i).x);
end
end
function offspring = hybridEvolution(pop)
% 混合NSGA-II與差分進化(參考@ref)
parents = selectParents(pop, 200); % 錦標賽選擇
offspring = differentialEvolution(parents); % DE變異
offspring = crossover(offspring); % 模擬二進制交叉
offspring = mutate(offspring); % 多項式變異
end
function [newPop, front] = handleConstraints(pop, offspring)
% 約束帕累托前沿處理(參考@ref)
combined = [pop; offspring];
fronts = nonDominatedSort(combined);
feasible = [];
infeasible = [];
for i = 1:numel(combined)
if all(combined(i).cons <= 0)
feasible = [feasible, i];
else
infeasible = [infeasible, i];
end
end
% 自適應約束懲罰(參考@ref)
penaltyFactor = 1 + 0.5*mean(combined(infeasible).cons);
for i = infeasible
combined(i).objs = combined(i).objs + penaltyFactor*max(combined(i).cons);
end
% 合并前沿
front = [fronts{feasible}];
newPop = combineFronts(front, popSize);
end
二、模塊詳解
1. 動態約束處理
function updateDynamicConstraints()
global currentConstraints;
phase = mod(t,5); % 5階段周期變化
if phase == 0
currentConstraints = {@(x) x(1)+x(2) <= 1, @(x) x(3) >= 0.5};
elseif phase == 2
currentConstraints = {@(x) x(1)-x(3) >= 0, @(x) x(2)*x(4) <= 0.8};
else
currentConstraints = {@(x) x(1)+x(2)+x(3) <= 2};
end
end
2. 自適應約束懲罰
function penalty = calculatePenalty(ind)
% 自適應懲罰因子計算
basePenalty = 10; % 基礎懲罰強度
constrViol = max(0, [ind.cons]);
penalty = basePenalty * (1 + mean(constrViol));
end
3. 多目標適應度評估
function [objs, cons] = evaluate(x)
% 目標函數定義(示例:ZDT系列)
f1 = x(1);
g = 1 + 9*sum(x(2:end))/(length(x)-1);
f2 = g*(1 - sqrt(f1/g));
% 約束定義(示例:CEC2018)
c1 = x(1)^2 + x(2)^2 - 1; % 圓形約束
c2 = -x(3) + x(4); % 線性約束
objs = [f1, f2];
cons = [c1, c2];
end
三、完整測試案例
1. 標準測試函數(ZDT1)
% 參數設置
nVar = 30; % 變量維度
nObj = 2; % 目標數量
nCon = 0; % 無約束
% 運行算法
pop = initPopulation(100, nVar, nObj);
for gen = 1:200
offspring = hybridEvolution(pop);
pop = mergePopulations(pop, offspring);
end
% 繪制Pareto前沿
plotParetoFront(pop.objs(:,1:2));
title('ZDT1 Pareto Front');
2. 工程優化案例(壓力容器設計)
% 目標函數(最小化費用與重量)
f1 = 0.6224*x(1)*x(3)*x(4) + 1.7781*x(2)*x(3)^2;
f2 = 0.6224*x(1)*x(3)*x(4) + 1.7781*x(2)*x(3)^2;
% 約束條件
c1 = x(1) - 0.0193*x(2); % 厚度約束
c2 = x(2) - 0.00954*x(3); % 強度約束
c3 = pi*x(3)^2*x(4) - 4/3*pi*x(3)^3; % 體積約束
objs = [f1, f2];
cons = [c1, c2, c3];
參考代碼 基于多目標優化和混合進化算法的約束問題優化 www.youwenfan.com/contentcnk/79112.html
四、代碼優化
-
并行計算加速
parfor i = 1:popSize offspring(i) = evaluate(offspring(i).x); end -
GPU加速
gpuPop = gpuArray(pop); gpuObj = arrayfun(@evaluate, gpuPop); -
自適應參數調整
pc = 0.9 - 0.4*(gen/maxGen); % 交叉概率動態調整 pm = 0.1 + 0.2*(gen/maxGen); % 變異概率動態調整

浙公網安備 33010602011771號