循環(huán)神經(jīng)網(wǎng)絡(luò)的從零開始實(shí)現(xiàn)(RNN)
代碼總覽
%matplotlib inline
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
# 獨(dú)熱編碼
F.one_hot(torch.tensor([0, 2]), len(vocab))

# 小批量數(shù)據(jù)形狀是二維張量: (批量大小,時(shí)間步數(shù))
X = torch.arange(10).reshape((2, 5))
F.one_hot(X.T, 28).shape

# 初始化模型參數(shù)
def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device) * 0.01
# 隱藏層參數(shù)
W_xh = normal((num_inputs, num_hiddens))
W_hh = normal((num_hiddens, num_hiddens)) # 這行若沒有,就是一個(gè)單隱藏層的 MLP
b_h = torch.zeros(num_hiddens, device=device)
# 輸出層參數(shù)
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
# 附加梯度
params = [W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
# 一個(gè) init_rnn_state 函數(shù)在初始化時(shí)返回隱狀態(tài)
def init_rnn_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), )
# 下面的rnn函數(shù)定義了如何在一個(gè)時(shí)間步內(nèi)計(jì)算隱狀態(tài)和輸出
def rnn(inputs, state, params):
# inputs的形狀:(時(shí)間步數(shù)量,批量大小,詞表大小)
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
# X的形狀:(批量大小,詞表大小)
for X in inputs:
H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
Y = torch.mm(H, W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H,)
# 創(chuàng)建一個(gè)類來包裝這些函數(shù), 并存儲從零開始實(shí)現(xiàn)的循環(huán)神經(jīng)網(wǎng)絡(luò)模型的參數(shù)
class RNNModelScratch:
"""從零開始實(shí)現(xiàn)的循環(huán)神經(jīng)網(wǎng)絡(luò)模型"""
def __init__(self, vocab_size, num_hiddens, device,
get_params, init_state, forward_fn):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.params = get_params(vocab_size, num_hiddens, device)
self.init_state, self.forward_fn = init_state, forward_fn
def __call__(self, X, state):
X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
return self.forward_fn(X, state, self.params)
def begin_state(self, batch_size, device):
return self.init_state(batch_size, self.num_hiddens, device)
# 檢查輸出是否具有正確的形狀
num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape

# 首先定義預(yù)測函數(shù)來生成prefix之后的新字符
def predict_ch8(prefix, num_preds, net, vocab, device):
"""在prefix后面生成新字符"""
state = net.begin_state(batch_size=1, device=device)
outputs = [vocab[prefix[0]]]
get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
for y in prefix[1:]: # 預(yù)熱期
_, state = net(get_input(), state)
outputs.append(vocab[y])
for _ in range(num_preds): # 預(yù)測num_preds步
y, state = net(get_input(), state)
outputs.append(int(y.argmax(dim=1).reshape(1)))
return ''.join([vocab.idx_to_token[i] for i in outputs])
predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())

# 梯度裁剪

def grad_clipping(net, theta):
"""裁剪梯度"""
if isinstance(net, nn.Module):
params = [p for p in net.parameters() if p.requires_grad]
else:
params = net.params
norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
if norm > theta:
for param in params:
param.grad[:] *= theta / norm
# 定義一個(gè)函數(shù)在一個(gè)迭代周期內(nèi)訓(xùn)練模型
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
"""訓(xùn)練網(wǎng)絡(luò)一個(gè)迭代周期(定義見第8章)"""
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2) # 訓(xùn)練損失之和,詞元數(shù)量
for X, Y in train_iter:
if state is None or use_random_iter:
# 在第一次迭代或使用隨機(jī)抽樣時(shí)初始化state
state = net.begin_state(batch_size=X.shape[0], device=device)
else:
if isinstance(net, nn.Module) and not isinstance(state, tuple):
# state對于nn.GRU是個(gè)張量
state.detach_()
else:
# state對于nn.LSTM或?qū)τ谖覀儚牧汩_始實(shí)現(xiàn)的模型是個(gè)張量
for s in state:
s.detach_()
y = Y.T.reshape(-1)
X, y = X.to(device), y.to(device)
y_hat, state = net(X, state)
l = loss(y_hat, y.long()).mean()
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.backward()
grad_clipping(net, 1)
updater.step()
else:
l.backward()
grad_clipping(net, 1)
# 因?yàn)橐呀?jīng)調(diào)用了mean函數(shù)
updater(batch_size=1)
metric.add(l * y.numel(), y.numel())
return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
# 循環(huán)神經(jīng)網(wǎng)絡(luò)模型的訓(xùn)練函數(shù)既支持從零開始實(shí)現(xiàn), 也可以使用高級API來實(shí)現(xiàn)
def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
use_random_iter=False):
"""訓(xùn)練模型(定義見第8章)"""
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
legend=['train'], xlim=[10, num_epochs])
# 初始化
if isinstance(net, nn.Module):
updater = torch.optim.SGD(net.parameters(), lr)
else:
updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
# 訓(xùn)練和預(yù)測
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(
net, train_iter, loss, updater, device, use_random_iter)
if (epoch + 1) % 10 == 0:
print(predict('time traveller'))
animator.add(epoch + 1, [ppl])
print(f'困惑度 {ppl:.1f}, {speed:.1f} 詞元/秒 {str(device)}')
print(predict('time traveller'))
print(predict('traveller'))
# 現(xiàn)在,我們訓(xùn)練循環(huán)神經(jīng)網(wǎng)絡(luò)模型
num_epochs, lr = 500, 1
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())

# 最后,讓我們檢查一下使用隨機(jī)抽樣方法的結(jié)果
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True)

代碼解釋
1. 初始設(shè)置與數(shù)據(jù)準(zhǔn)備
%matplotlib inline
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
-
功能:
-
%matplotlib inline: 在Jupyter Notebook中內(nèi)嵌顯示matplotlib圖形
-
import math: 導(dǎo)入數(shù)學(xué)計(jì)算模塊
-
import torch: 導(dǎo)入PyTorch深度學(xué)習(xí)框架
-
from torch import nn: 導(dǎo)入PyTorch的神經(jīng)網(wǎng)絡(luò)模塊
-
from torch.nn import functional as F: 導(dǎo)入PyTorch的函數(shù)模塊
-
from d2l import torch as d2l: 導(dǎo)入《動(dòng)手學(xué)深度學(xué)習(xí)》的配套工具庫
-
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
-
功能:
-
設(shè)置批量大小為32,時(shí)間步數(shù)為35
-
加載時(shí)間機(jī)器數(shù)據(jù)集:
-
d2l.load_data_time_machine() 函數(shù)加載并預(yù)處理數(shù)據(jù)
-
返回?cái)?shù)據(jù)迭代器(train_iter)和詞匯表(vocab)
-
詞匯表大小:28個(gè)字符(小寫字母+空格+標(biāo)點(diǎn))
-
-
2. 數(shù)據(jù)預(yù)處理與表示
# 獨(dú)熱編碼
F.one_hot(torch.tensor([0, 2]), len(vocab))
-
功能:
-
演示如何將整數(shù)索引轉(zhuǎn)換為獨(dú)熱編碼
-
輸入:[0, 2](兩個(gè)字符的索引)
-
輸出:形狀為(2, 28)的張量,每行對應(yīng)一個(gè)字符的獨(dú)熱編碼
-
例如:索引0 → [1,0,0,...],索引2 → [0,0,1,0,...]
-
# 小批量數(shù)據(jù)形狀是二維張量: (批量大小,時(shí)間步數(shù))
X = torch.arange(10).reshape((2, 5))
F.one_hot(X.T, 28).shape
-
功能:
-
創(chuàng)建示例數(shù)據(jù):2個(gè)樣本,每個(gè)樣本5個(gè)時(shí)間步
-
轉(zhuǎn)置數(shù)據(jù):從(2,5)變?yōu)?5,2)
-
應(yīng)用獨(dú)熱編碼:得到形狀(5, 2, 28)
-
這表示:5個(gè)時(shí)間步,2個(gè)樣本,每個(gè)時(shí)間步是28維的獨(dú)熱向量
-
3. 模型參數(shù)初始化
# 初始化模型參數(shù)
def get_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device) * 0.01
# 隱藏層參數(shù)
W_xh = normal((num_inputs, num_hiddens))
W_hh = normal((num_hiddens, num_hiddens)) # 這行若沒有,就是一個(gè)單隱藏層的 MLP
b_h = torch.zeros(num_hiddens, device=device)
# 輸出層參數(shù)
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
# 附加梯度
params = [W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
-
功能:
-
初始化RNN的五個(gè)關(guān)鍵參數(shù):
-
W_xh: 輸入到隱藏層的權(quán)重 (28×512)
-
W_hh: 隱藏層到隱藏層的權(quán)重 (512×512) - RNN的關(guān)鍵!
-
b_h: 隱藏層偏置 (512,)
-
W_hq: 隱藏層到輸出層的權(quán)重 (512×28)
-
b_q: 輸出層偏置 (28,)
-
-
使用小隨機(jī)數(shù)初始化權(quán)重(標(biāo)準(zhǔn)差0.01)
-
偏置初始化為0
-
所有參數(shù)設(shè)置為需要梯度計(jì)算
-
4. 隱藏狀態(tài)初始化
# 一個(gè) init_rnn_state 函數(shù)在初始化時(shí)返回隱狀態(tài)
def init_rnn_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device), )
-
功能:
-
創(chuàng)建初始隱藏狀態(tài)(H0)
-
形狀:(batch_size, num_hiddens) = (32, 512)
-
全部初始化為0
-
返回元組格式(為了與LSTM等更復(fù)雜模型兼容)
-
5. RNN前向傳播
# 下面的rnn函數(shù)定義了如何在一個(gè)時(shí)間步內(nèi)計(jì)算隱狀態(tài)和輸出
def rnn(inputs, state, params):
# inputs的形狀:(時(shí)間步數(shù)量,批量大小,詞表大小)
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
# X的形狀:(批量大小,詞表大小)
for X in inputs:
H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
Y = torch.mm(H, W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H,)
-
功能:
-
RNN核心計(jì)算邏輯
-
遍歷每個(gè)時(shí)間步:
-
計(jì)算新隱藏狀態(tài):H = tanh(X·W_xh + H·W_hh + b_h)
-
計(jì)算當(dāng)前輸出:Y = H·W_hq + b_q
-
-
拼接所有時(shí)間步的輸出
-
返回輸出序列和最終隱藏狀態(tài)
-
6. RNN模型封裝
# 創(chuàng)建一個(gè)類來包裝這些函數(shù), 并存儲從零開始實(shí)現(xiàn)的循環(huán)神經(jīng)網(wǎng)絡(luò)模型的參數(shù)
class RNNModelScratch:
"""從零開始實(shí)現(xiàn)的循環(huán)神經(jīng)網(wǎng)絡(luò)模型"""
def __init__(self, vocab_size, num_hiddens, device,
get_params, init_state, forward_fn):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.params = get_params(vocab_size, num_hiddens, device)
self.init_state, self.forward_fn = init_state, forward_fn
def __call__(self, X, state):
X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
return self.forward_fn(X, state, self.params)
def begin_state(self, batch_size, device):
return self.init_state(batch_size, self.num_hiddens, device)
-
功能:
-
封裝RNN模型為可調(diào)用類
-
__init__: 初始化參數(shù)和前向函數(shù)
-
__call__:
-
將輸入轉(zhuǎn)換為獨(dú)熱編碼
-
調(diào)用前向傳播函數(shù)
-
-
begin_state: 創(chuàng)建初始隱藏狀態(tài)
-
7. 模型驗(yàn)證與文本生成
# 檢查輸出是否具有正確的形狀
num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
-
功能:
-
實(shí)例化RNN模型
-
創(chuàng)建初始隱藏狀態(tài)
-
Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape
-
功能:
-
執(zhí)行前向傳播
-
驗(yàn)證輸出形狀:(時(shí)間步×批量大小, 詞匯表大小) = (10, 28)
-
驗(yàn)證隱藏狀態(tài)形狀:(批量大小, 隱藏單元數(shù)) = (2, 512)
-
# 首先定義預(yù)測函數(shù)來生成prefix之后的新字符
def predict_ch8(prefix, num_preds, net, vocab, device):
"""在prefix后面生成新字符"""
state = net.begin_state(batch_size=1, device=device)
outputs = [vocab[prefix[0]]]
get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
for y in prefix[1:]: # 預(yù)熱期
_, state = net(get_input(), state)
outputs.append(vocab[y])
for _ in range(num_preds): # 預(yù)測num_preds步
y, state = net(get_input(), state)
outputs.append(int(y.argmax(dim=1).reshape(1))
return ''.join([vocab.idx_to_token[i] for i in outputs])
-
功能:
-
初始化隱藏狀態(tài)
-
預(yù)熱期:用前綴字符初始化狀態(tài)
-
預(yù)測期:用模型預(yù)測下一個(gè)字符
-
將預(yù)測結(jié)果轉(zhuǎn)換為字符串
-
8. 訓(xùn)練準(zhǔn)備:梯度裁剪
# 梯度裁剪
def grad_clipping(net, theta):
"""裁剪梯度"""
if isinstance(net, nn.Module):
params = [p for p in net.parameters() if p.requires_grad]
else:
params = net.params
norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
if norm > theta:
for param in params:
param.grad[:] *= theta / norm
-
功能:
-
防止梯度爆炸
-
計(jì)算所有參數(shù)梯度的L2范數(shù)
-
如果范數(shù)超過閾值(theta=1),等比例縮小梯度
-
9. 訓(xùn)練循環(huán)實(shí)現(xiàn)
# 定義一個(gè)函數(shù)在一個(gè)迭代周期內(nèi)訓(xùn)練模型
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
"""訓(xùn)練網(wǎng)絡(luò)一個(gè)迭代周期(定義見第8章)"""
state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2) # 訓(xùn)練損失之和,詞元數(shù)量
for X, Y in train_iter:
if state is None or use_random_iter:
# 在第一次迭代或使用隨機(jī)抽樣時(shí)初始化state
state = net.begin_state(batch_size=X.shape[0], device=device)
else:
if isinstance(net, nn.Module) and not isinstance(state, tuple):
# state對于nn.GRU是個(gè)張量
state.detach_()
else:
# state對于nn.LSTM或?qū)τ谖覀儚牧汩_始實(shí)現(xiàn)的模型是個(gè)張量
for s in state:
s.detach_()
y = Y.T.reshape(-1)
X, y = X.to(device), y.to(device)
y_hat, state = net(X, state)
l = loss(y_hat, y.long()).mean()
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.backward()
grad_clipping(net, 1)
updater.step()
else:
l.backward()
grad_clipping(net, 1)
# 因?yàn)橐呀?jīng)調(diào)用了mean函數(shù)
updater(batch_size=1)
metric.add(l * y.numel(), y.numel())
return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
-
功能:
-
管理隱藏狀態(tài)(初始化或分離)
-
準(zhǔn)備數(shù)據(jù)(移動(dòng)到設(shè)備)
-
前向傳播
-
計(jì)算損失(交叉熵)
-
反向傳播
-
梯度裁剪
-
參數(shù)更新
-
計(jì)算困惑度(perplexity)和訓(xùn)練速度
-
# 循環(huán)神經(jīng)網(wǎng)絡(luò)模型的訓(xùn)練函數(shù)既支持從零開始實(shí)現(xiàn), 也可以使用高級API來實(shí)現(xiàn)
def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
use_random_iter=False):
"""訓(xùn)練模型(定義見第8章)"""
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
legend=['train'], xlim=[10, num_epochs])
# 初始化
if isinstance(net, nn.Module):
updater = torch.optim.SGD(net.parameters(), lr)
else:
updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
# 訓(xùn)練和預(yù)測
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(
net, train_iter, loss, updater, device, use_random_iter)
if (epoch + 1) % 10 == 0:
print(predict('time traveller'))
animator.add(epoch + 1, [ppl])
print(f'困惑度 {ppl:.1f}, {speed:.1f} 詞元/秒 {str(device)}')
print(predict('time traveller'))
print(predict('traveller'))
-
功能:
-
設(shè)置損失函數(shù)和可視化
-
初始化優(yōu)化器
-
每10個(gè)epoch生成預(yù)測文本
-
繪制困惑度曲線
-
輸出最終訓(xùn)練結(jié)果
-
10. 模型訓(xùn)練執(zhí)行
# 訓(xùn)練循環(huán)神經(jīng)網(wǎng)絡(luò)模型
num_epochs, lr = 500, 1
- 功能:設(shè)置訓(xùn)練輪數(shù)(500)和學(xué)習(xí)率(1)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())
- 功能:執(zhí)行訓(xùn)練(順序采樣)
# 最后,檢查一下使用隨機(jī)抽樣方法的結(jié)果
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn)
- 功能:重新初始化模型(確保公平比較)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True)
- 功能:執(zhí)行訓(xùn)練(隨機(jī)采樣)
關(guān)鍵執(zhí)行流程總結(jié)
1. 數(shù)據(jù)流
-
文本數(shù)據(jù) → 字符索引 → 獨(dú)熱編碼
-
輸入形狀:(批量大小, 時(shí)間步數(shù)) → (時(shí)間步數(shù), 批量大小, 詞匯表大小)
2. 模型流
輸入X → 獨(dú)熱編碼 → RNN單元 → 隱藏狀態(tài)H → 輸出Y
↑ ↓
└───[H]──┘
3. 訓(xùn)練流
for epoch in 500:
初始化隱藏狀態(tài)
for batch in 數(shù)據(jù)迭代器:
前向傳播 → 計(jì)算損失 → 反向傳播 → 梯度裁剪 → 更新參數(shù)
每10個(gè)epoch:生成文本并顯示困惑度
4. 文本生成流
給定前綴 → 預(yù)熱狀態(tài) → 循環(huán)生成字符 → 拼接結(jié)果

浙公網(wǎng)安備 33010602011771號