<output id="qn6qe"></output>

    1. <output id="qn6qe"><tt id="qn6qe"></tt></output>
    2. <strike id="qn6qe"></strike>

      亚洲 日本 欧洲 欧美 视频,日韩中文字幕有码av,一本一道av中文字幕无码,国产线播放免费人成视频播放,人妻少妇偷人无码视频,日夜啪啪一区二区三区,国产尤物精品自在拍视频首页,久热这里只有精品12

      pytorch resnet實(shí)現(xiàn)

      官方github上已經(jīng)有了pytorch基礎(chǔ)模型的實(shí)現(xiàn),鏈接

      但是其中一些模型,尤其是resnet,都是用函數(shù)生成的各個(gè)層,自己看起來是真的難受!

      所以自己按照caffe的樣子,寫一個(gè)pytorch的resnet18模型,當(dāng)然和1000分類模型不同,模型做了一些修改,輸入48*48的3通道圖片,輸出7類。

       

      import torch.nn as nn
      import torch.nn.functional as F
      
      class ResNet18Model(nn.Module):
      	def __init__(self):
      		super().__init__()
      
      		self.bn64_0 = nn.BatchNorm2d(64)
      		self.bn64_1 = nn.BatchNorm2d(64)
      		self.bn64_2 = nn.BatchNorm2d(64)
      		self.bn64_3 = nn.BatchNorm2d(64)
      		self.bn64_4 = nn.BatchNorm2d(64)
      
      
      		self.bn128_0 = nn.BatchNorm2d(128)
      		self.bn128_1 = nn.BatchNorm2d(128)
      		self.bn128_2 = nn.BatchNorm2d(128)
      		self.bn128_3 = nn.BatchNorm2d(128)
      
      		self.bn256_0 = nn.BatchNorm2d(256)
      		self.bn256_1 = nn.BatchNorm2d(256)
      		self.bn256_2 = nn.BatchNorm2d(256)
      		self.bn256_3 = nn.BatchNorm2d(256)
      
      		self.bn512_0 = nn.BatchNorm2d(512)
      		self.bn512_1 = nn.BatchNorm2d(512)
      		self.bn512_2 = nn.BatchNorm2d(512)
      		self.bn512_3 = nn.BatchNorm2d(512)
      
      
      		self.shortcut_straight_0 = nn.Sequential()
      		self.shortcut_straight_1 = nn.Sequential()
      		self.shortcut_straight_2 = nn.Sequential()
      		self.shortcut_straight_3 = nn.Sequential()
      		self.shortcut_straight_4 = nn.Sequential()
      
      
      		self.shortcut_conv_bn_64_128_0 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(128))
      
      		self.shortcut_conv_bn_128_256_0 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(256))
      
      		self.shortcut_conv_bn_256_512_0 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(512))
      
      
      		self.conv_w3_h3_in3_out64_s1_p1_0 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
      
      		self.conv_w3_h3_in64_out64_s1_p1_0 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
      		self.conv_w3_h3_in64_out64_s1_p1_1 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
      		self.conv_w3_h3_in64_out64_s1_p1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
      		self.conv_w3_h3_in64_out64_s1_p1_3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
      
      
      		self.conv_w3_h3_in64_out128_s2_p1_0 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False)
      
      		self.conv_w3_h3_in128_out128_s1_p1_0 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
      		self.conv_w3_h3_in128_out128_s1_p1_1 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
      		self.conv_w3_h3_in128_out128_s1_p1_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
      
      
      		self.conv_w3_h3_in128_out256_s2_p1_0 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False)
      
      		self.conv_w3_h3_in256_out256_s1_p1_0 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
      		self.conv_w3_h3_in256_out256_s1_p1_1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
      		self.conv_w3_h3_in256_out256_s1_p1_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
      
      
      		self.conv_w3_h3_in256_out512_s2_p1_0 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
      
      		self.conv_w3_h3_in512_out512_s1_p1_0 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
      		self.conv_w3_h3_in512_out512_s1_p1_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
      		self.conv_w3_h3_in512_out512_s1_p1_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
      
      
      		self.avg_pool_0 = nn.AdaptiveAvgPool2d((1, 1))
      		self.fc_512_7_0 = nn.Linear(512, 7)
      		self.dropout_0 = nn.Dropout(p=0.5)
      
      
      
      
      	def forward(self, x):
      
      		# 48*48*3
      		t = self.conv_w3_h3_in3_out64_s1_p1_0(x) #48*48*64
      		t = self.bn64_0(t)
      		y1 = F.relu(t)
      
      
      		t = self.conv_w3_h3_in64_out64_s1_p1_0(y1) #48*48*64
      		t = self.bn64_1(t) 
      		y2 = F.relu(t)
      
      		t = self.conv_w3_h3_in64_out64_s1_p1_1(y2) #48*48*64
      		t = self.bn64_2(t)
      		t += self.shortcut_straight_0(y1)
      		y3 = F.relu(t)
      
      
      		t = self.conv_w3_h3_in64_out64_s1_p1_2(y3) #48*48*64
      		t = self.bn64_3(t)
      		y4 = F.relu(t)
      
      		t = self.conv_w3_h3_in64_out64_s1_p1_3(y4) #48*48*64
      		t = self.bn64_4(t)
      		t += self.shortcut_straight_1(y3)
      		y5 = F.relu(t)
      
      
      		t = self.conv_w3_h3_in64_out128_s2_p1_0(y5) #24*24*128
      		t = self.bn128_0(t)
      		y6 = F.relu(t)
      
      		t = self.conv_w3_h3_in128_out128_s1_p1_0(y6) #24*24*128
      		t = self.bn128_1(t)
      		t += self.shortcut_conv_bn_64_128_0(y5)
      		y7 = F.relu(t)
      
      
      		t = self.conv_w3_h3_in128_out128_s1_p1_1(y7) #24*24*128
      		t = self.bn128_2(t)
      		y8 = F.relu(t)
      
      		t = self.conv_w3_h3_in128_out128_s1_p1_2(y8) #24*24*128
      		t = self.bn128_3(t)
      		t += self.shortcut_straight_2(y7)
      		y9 = F.relu(t)
      
      
      		t = self.conv_w3_h3_in128_out256_s2_p1_0(y9) #12*12*256
      		t = self.bn256_0(t)
      		y10 = F.relu(t)
      
      		t = self.conv_w3_h3_in256_out256_s1_p1_0(y10) #12*12*256
      		t = self.bn256_1(t)
      		t += self.shortcut_conv_bn_128_256_0(y9)
      		y11 = F.relu(t)
      
      
      		t = self.conv_w3_h3_in256_out256_s1_p1_1(y11) #12*12*256
      		t = self.bn256_2(t)
      		y12 = F.relu(t)
      
      		t = self.conv_w3_h3_in256_out256_s1_p1_2(y12) #12*12*256
      		t = self.bn256_3(t)
      		t += self.shortcut_straight_3(y11)
      		y13 = F.relu(t)
      
      
      		t = self.conv_w3_h3_in256_out512_s2_p1_0(y13) #6*6*512
      		t = self.bn512_0(t)
      		y14 = F.relu(t)
      
      		t = self.conv_w3_h3_in512_out512_s1_p1_0(y14) #6*6*512
      		t = self.bn512_1(t)
      		t += self.shortcut_conv_bn_256_512_0(y13)
      		y15 = F.relu(t)
      
      
      		t = self.conv_w3_h3_in512_out512_s1_p1_1(y15) #6*6*512
      		t = self.bn512_2(t)
      		y16 = F.relu(t)
      
      		t = self.conv_w3_h3_in512_out512_s1_p1_2(y16) #6*6*512
      		t = self.bn512_3(t)
      		t += self.shortcut_straight_4(y15)
      		y17 = F.relu(t)
      
      
      		out = self.avg_pool_0(y17) #1*1*512		
      		out = out.view(out.size(0), -1)
      		out = self.dropout_0(out)
      		out = self.fc_512_7_0(out)
      
      		return out
      
      
      
      if __name__ == '__main__':
      	net = ResNet18Model()
      	# print(net)
      
      	import torch
      	net_in = torch.rand(1, 3, 48, 48)
      	net_out = net(net_in)
      	print(net_out)
      	print(net_out.size())
      

        

      posted @ 2019-05-24 17:07  立冬以東  閱讀(1657)  評論(0)    收藏  舉報(bào)
      主站蜘蛛池模板: 337p日本欧洲亚洲大胆色噜噜| 精品人妻少妇一区二区三区在线| 欧美肥老太交视频免费 | 东京热人妻无码一区二区av| 一区二区丝袜美腿视频| 成人av天堂男人资源站| 色一情一区二区三区四区| 国产精品国三级国产专区| 99久久精品费精品国产一区二| 二区中文字幕在线观看| 亚洲av无码精品蜜桃| 精品国产免费一区二区三区香蕉| 亚洲国产成人无码av在线播放| 国产亚洲一在无在线观看| 国产午夜精品久久久久免费视 | 国产成人精品无码专区| 亚洲区成人综合一区二区| 精品无码国产污污污免费| 亚洲国产精品综合久久20| 一区二区三区四区黄色网| 国产一区二区不卡91| 亚洲综合无码一区二区三区不卡| 精品国产成人国产在线视| 免费无码又爽又刺激网站| 国产超碰人人做人人爰| 扒开双腿猛进入喷水高潮叫声| 日韩有码中文字幕国产| 大伊香蕉精品一区视频在线| 久久精品国产99精品亚洲| 成人av午夜在线观看| 欧洲亚洲精品免费二区| 丝袜美腿亚洲综合第一页| 妺妺窝人体色www看美女| 精品人妻伦九区久久69| 99精品国产中文字幕| 欧美日韩精品一区二区视频| 亚洲成熟女人av在线观看| 久久精品波多野结衣| 精品自拍偷拍一区二区三区| 国产午夜福利免费入口| 午夜福利国产精品视频|