<output id="qn6qe"></output>

    1. <output id="qn6qe"><tt id="qn6qe"></tt></output>
    2. <strike id="qn6qe"></strike>

      亚洲 日本 欧洲 欧美 视频,日韩中文字幕有码av,一本一道av中文字幕无码,国产线播放免费人成视频播放,人妻少妇偷人无码视频,日夜啪啪一区二区三区,国产尤物精品自在拍视频首页,久热这里只有精品12

      擴展group by語句

      學(xué)習(xí)自《劍破冰山 Oracle開發(fā)藝術(shù)》第五章 報表開發(fā)之?dāng)U展GROUP BY


      對于簡單group by語句很難對復(fù)雜維度進行分析,難以達(dá)到實際生產(chǎn)的復(fù)雜報表需求,group by的擴展特性就需要了,union語句也可以達(dá)到需求但是sql復(fù)雜且效率低

      1 rollup多維匯總

      rollup,分組先進行常規(guī)分組,然后在此基礎(chǔ)上,通過將列從右向左移動,然后進行更高一級的小計,最后合計,注意rollup分組和列的順序相關(guān)

      指定n列,有n+1種分組方式

      部分rollup可以剔除某些不需要的小計和合計

      例子

      [oracle@localhost ~]$ sqlplus scott/tiger;
      
      SQL*Plus: Release 11.2.0.4.0 Production on Mon Mar 23 10:31:24 2020
      
      Copyright (c) 1982, 2013, Oracle.  All rights reserved.
      
      
      Connected to:
      Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production
      With the Partitioning, OLAP, Data Mining and Real Application Testing options
      
      10:31:24 SCOTT@edw> set autotrace on
      10:31:30 SCOTT@edw> SELECT a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY ROLLUP(a.dname,b.job);
      
      DNAME          JOB          SUM_SAL
      -------------- --------- ----------
      SALES          CLERK            950
      SALES          MANAGER         2850
      SALES          SALESMAN        5600
      SALES                          9400
      RESEARCH       CLERK           1900
      RESEARCH       ANALYST         6000
      RESEARCH       MANAGER         2975
      RESEARCH                      10875
      ACCOUNTING     CLERK           1300
      ACCOUNTING     MANAGER         2450
      ACCOUNTING     PRESIDENT       5000
      ACCOUNTING                     8750
                                    29025
      
      13 rows selected.
      
      Elapsed: 00:00:00.01
      
      Execution Plan
      ----------------------------------------------------------
      Plan hash value: 3067950682
      
      -----------------------------------------------------------------------------------------
      | Id  | Operation                     | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
      -----------------------------------------------------------------------------------------
      |   0 | SELECT STATEMENT              |         |    14 |   392 |     7  (29)| 00:00:01 |
      |   1 |  SORT GROUP BY ROLLUP         |         |    14 |   392 |     7  (29)| 00:00:01 |
      |   2 |   MERGE JOIN                  |         |    14 |   392 |     6  (17)| 00:00:01 |
      |   3 |    TABLE ACCESS BY INDEX ROWID| DEPT    |     4 |    52 |     2   (0)| 00:00:01 |
      |   4 |     INDEX FULL SCAN           | PK_DEPT |     4 |       |     1   (0)| 00:00:01 |
      |*  5 |    SORT JOIN                  |         |    14 |   210 |     4  (25)| 00:00:01 |
      |   6 |     TABLE ACCESS FULL         | EMP     |    14 |   210 |     3   (0)| 00:00:01 |
      -----------------------------------------------------------------------------------------
      
      Predicate Information (identified by operation id):
      ---------------------------------------------------
      
         5 - access("A"."DEPTNO"="B"."DEPTNO")
             filter("A"."DEPTNO"="B"."DEPTNO")
      
      
      Statistics
      ----------------------------------------------------------
                0  recursive calls
                0  db block gets
                8  consistent gets
                0  physical reads
                0  redo size
              913  bytes sent via SQL*Net to client
              524  bytes received via SQL*Net from client
                2  SQL*Net roundtrips to/from client
                2  sorts (memory)
                0  sorts (disk)
               13  rows processed
      
      10:31:34 SCOTT@edw> 
      

      可以看出僅僅dept和emp表均僅掃描一次,而如果是union來寫就會多次重復(fù)掃描,效率低

      通過執(zhí)行計劃看到有個隱藏操作SORT GROUP BY ROLLUP ,顯示結(jié)果有序,一般還是要顯示排序的,默認(rèn)的排序不一定符合業(yè)務(wù)需求

      rollup分組具有方向性

      如果使用hint:expand_gset_to_union,則優(yōu)化器會將rollup轉(zhuǎn)換為對應(yīng)的union all操作,其他的grouping sets、cube也可以


      部分rollup分組,將不需要小計的列從rollup拿出到group by中即可,當(dāng)然合計也沒有了

      例子

      10:31:34 SCOTT@edw> set autotrace off
      10:43:49 SCOTT@edw> SELECT to_char(b.hiredate,'yyyy') hire_year,a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY to_char(b.hiredate,'yyyy'),a.dname,ROLLUP(b.job);
      
      HIRE DNAME          JOB          SUM_SAL
      ---- -------------- --------- ----------
      1980 RESEARCH       CLERK            800
      1980 RESEARCH                        800
      1981 SALES          CLERK            950
      1981 SALES          MANAGER         2850
      1981 SALES          SALESMAN        5600
      1981 SALES                          9400
      1981 RESEARCH       ANALYST         3000
      1981 RESEARCH       MANAGER         2975
      1981 RESEARCH                       5975
      1981 ACCOUNTING     MANAGER         2450
      1981 ACCOUNTING     PRESIDENT       5000
      1981 ACCOUNTING                     7450
      1982 ACCOUNTING     CLERK           1300
      1982 ACCOUNTING                     1300
      1987 RESEARCH       CLERK           1100
      1987 RESEARCH       ANALYST         3000
      1987 RESEARCH                       4100
      
      17 rows selected.
      
      Elapsed: 00:00:00.01
      10:43:53 SCOTT@edw> 
      

      2 cube交叉報表

      cube分組可以實現(xiàn)更精細(xì)復(fù)雜的統(tǒng)計,對不同維度的所以可能進行分析,生成交叉報表,cube分組,是從n列中先進行合計,即一個列不取,然后小計,即取1列到n-1列,最后n列全取,即標(biāo)準(zhǔn)分組

      因為包含所有可能的組合,所以結(jié)果與列的順序無關(guān),列順序僅僅影響默認(rèn)的隱藏排序而已,如果用了顯示排序則無所謂了

      cube分組增加一列,可能結(jié)果是指數(shù)級的增長,分組種類2的n次方

      語法類似,例子

      11:02:40 SCOTT@edw> set autotrace on
      11:02:48 SCOTT@edw>  SELECT a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY CUBE(a.dname,b.job);
      
      DNAME          JOB          SUM_SAL
      -------------- --------- ----------
                                    29025
                     CLERK           4150
                     ANALYST         6000
                     MANAGER         8275
                     SALESMAN        5600
                     PRESIDENT       5000
      SALES                          9400
      SALES          CLERK            950
      SALES          MANAGER         2850
      SALES          SALESMAN        5600
      RESEARCH                      10875
      RESEARCH       CLERK           1900
      RESEARCH       ANALYST         6000
      RESEARCH       MANAGER         2975
      ACCOUNTING                     8750
      ACCOUNTING     CLERK           1300
      ACCOUNTING     MANAGER         2450
      ACCOUNTING     PRESIDENT       5000
      
      18 rows selected.
      
      Elapsed: 00:00:00.01
      
      Execution Plan
      ----------------------------------------------------------
      Plan hash value: 2382666110
      
      -------------------------------------------------------------------------------------------
      | Id  | Operation                       | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
      -------------------------------------------------------------------------------------------
      |   0 | SELECT STATEMENT                |         |    14 |   392 |     7  (29)| 00:00:01 |
      |   1 |  SORT GROUP BY                  |         |    14 |   392 |     7  (29)| 00:00:01 |
      |   2 |   GENERATE CUBE                 |         |    14 |   392 |     7  (29)| 00:00:01 |
      |   3 |    SORT GROUP BY                |         |    14 |   392 |     7  (29)| 00:00:01 |
      |   4 |     MERGE JOIN                  |         |    14 |   392 |     6  (17)| 00:00:01 |
      |   5 |      TABLE ACCESS BY INDEX ROWID| DEPT    |     4 |    52 |     2   (0)| 00:00:01 |
      |   6 |       INDEX FULL SCAN           | PK_DEPT |     4 |       |     1   (0)| 00:00:01 |
      |*  7 |      SORT JOIN                  |         |    14 |   210 |     4  (25)| 00:00:01 |
      |   8 |       TABLE ACCESS FULL         | EMP     |    14 |   210 |     3   (0)| 00:00:01 |
      -------------------------------------------------------------------------------------------
      
      Predicate Information (identified by operation id):
      ---------------------------------------------------
      
         7 - access("A"."DEPTNO"="B"."DEPTNO")
             filter("A"."DEPTNO"="B"."DEPTNO")
      
      
      Statistics
      ----------------------------------------------------------
                1  recursive calls
                0  db block gets
                8  consistent gets
                0  physical reads
                0  redo size
             1175  bytes sent via SQL*Net to client
              535  bytes received via SQL*Net from client
                3  SQL*Net roundtrips to/from client
                3  sorts (memory)
                0  sorts (disk)
               18  rows processed
      
      11:02:52 SCOTT@edw> 
      

      可以看執(zhí)行計劃,結(jié)果也是有序的


      部分cube分組,例子

      11:06:24 SCOTT@edw>  SELECT a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY a.dname,CUBE(b.job);
      
      DNAME          JOB          SUM_SAL
      -------------- --------- ----------
      SALES                          9400
      SALES          CLERK            950
      SALES          MANAGER         2850
      SALES          SALESMAN        5600
      RESEARCH                      10875
      RESEARCH       CLERK           1900
      RESEARCH       ANALYST         6000
      RESEARCH       MANAGER         2975
      ACCOUNTING                     8750
      ACCOUNTING     CLERK           1300
      ACCOUNTING     MANAGER         2450
      ACCOUNTING     PRESIDENT       5000
      
      12 rows selected.
      
      Elapsed: 00:00:00.00
      11:06:26 SCOTT@edw>
      

      3 grouping sets實現(xiàn)小計

      rollup和cube會產(chǎn)生各種標(biāo)準(zhǔn)分組、小計、合計,grouping  sets則只關(guān)注指定維度的小計,n列的結(jié)果也是n種

      如grouping sets(a,b,c)就是group by a、group by b和group by c的結(jié)果union all

      例子

      11:06:26 SCOTT@edw>  set autotrace on
      11:12:33 SCOTT@edw> SELECT to_char(b.hiredate,'yyyy') hire_year,a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY GROUPING SETS( to_char(b.hiredate,'yyyy'),a.dname,b.job);
      
      HIRE DNAME          JOB          SUM_SAL
      ---- -------------- --------- ----------
                          CLERK           4150
                          SALESMAN        5600
                          PRESIDENT       5000
                          MANAGER         8275
                          ANALYST         6000
           ACCOUNTING                     8750
           RESEARCH                      10875
           SALES                          9400
      1987                                4100
      1980                                 800
      1982                                1300
      1981                               22825
      
      12 rows selected.
      
      Elapsed: 00:00:00.01
      
      Execution Plan
      ----------------------------------------------------------
      Plan hash value: 2825031421
      
      ------------------------------------------------------------------------------------------------------------
      | Id  | Operation                      | Name                      | Rows  | Bytes | Cost (%CPU)| Time     |
      ------------------------------------------------------------------------------------------------------------
      |   0 | SELECT STATEMENT               |                           |    14 |   448 |    17  (24)| 00:00:01 |
      |   1 |  TEMP TABLE TRANSFORMATION     |                           |       |       |            |          |
      |   2 |   LOAD AS SELECT               | SYS_TEMP_0FD9D660D_29B9BB |       |       |            |          |
      |   3 |    MERGE JOIN                  |                           |    14 |   504 |     6  (17)| 00:00:01 |
      |   4 |     TABLE ACCESS BY INDEX ROWID| DEPT                      |     4 |    52 |     2   (0)| 00:00:01 |
      |   5 |      INDEX FULL SCAN           | PK_DEPT                   |     4 |       |     1   (0)| 00:00:01 |
      |*  6 |     SORT JOIN                  |                           |    14 |   322 |     4  (25)| 00:00:01 |
      |   7 |      TABLE ACCESS FULL         | EMP                       |    14 |   322 |     3   (0)| 00:00:01 |
      |   8 |   LOAD AS SELECT               | SYS_TEMP_0FD9D660E_29B9BB |       |       |            |          |
      |   9 |    HASH GROUP BY               |                           |     5 |    60 |     3  (34)| 00:00:01 |
      |  10 |     TABLE ACCESS FULL          | SYS_TEMP_0FD9D660D_29B9BB |    14 |   168 |     2   (0)| 00:00:01 |
      |  11 |   LOAD AS SELECT               | SYS_TEMP_0FD9D660E_29B9BB |       |       |            |          |
      |  12 |    HASH GROUP BY               |                           |     4 |    56 |     3  (34)| 00:00:01 |
      |  13 |     TABLE ACCESS FULL          | SYS_TEMP_0FD9D660D_29B9BB |    14 |   196 |     2   (0)| 00:00:01 |
      |  14 |   LOAD AS SELECT               | SYS_TEMP_0FD9D660E_29B9BB |       |       |            |          |
      |  15 |    HASH GROUP BY               |                           |     1 |     8 |     3  (34)| 00:00:01 |
      |  16 |     TABLE ACCESS FULL          | SYS_TEMP_0FD9D660D_29B9BB |    14 |   112 |     2   (0)| 00:00:01 |
      |  17 |   VIEW                         |                           |     5 |   160 |     2   (0)| 00:00:01 |
      |  18 |    TABLE ACCESS FULL           | SYS_TEMP_0FD9D660E_29B9BB |     5 |    60 |     2   (0)| 00:00:01 |
      ------------------------------------------------------------------------------------------------------------
      
      Predicate Information (identified by operation id):
      ---------------------------------------------------
      
         6 - access("SYS_TBL_$2$"."DEPTNO"="SYS_TBL_$1$"."DEPTNO")
             filter("SYS_TBL_$2$"."DEPTNO"="SYS_TBL_$1$"."DEPTNO")
      
      
      Statistics
      ----------------------------------------------------------
               23  recursive calls
               33  db block gets
               39  consistent gets
                4  physical reads
             2172  redo size
              962  bytes sent via SQL*Net to client
              524  bytes received via SQL*Net from client
                2  SQL*Net roundtrips to/from client
                1  sorts (memory)
                0  sorts (disk)
               12  rows processed
      
      11:12:36 SCOTT@edw> 
      

      執(zhí)行計劃可以看出,沒有默認(rèn)排序了,無序,和列的順序也無關(guān)


      同理部分grouping sets分組,例子

      11:12:36 SCOTT@edw> set autotrace off
      11:17:03 SCOTT@edw> SELECT a.dname,to_char(b.hiredate,'yyyy') hire_year,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY a.dname,GROUPING SETS(to_char(b.hiredate,'yyyy'),b.job);
      
      DNAME          HIRE JOB          SUM_SAL
      -------------- ---- --------- ----------
      SALES               MANAGER         2850
      SALES               CLERK            950
      ACCOUNTING          MANAGER         2450
      ACCOUNTING          PRESIDENT       5000
      ACCOUNTING          CLERK           1300
      RESEARCH            MANAGER         2975
      SALES               SALESMAN        5600
      RESEARCH            ANALYST         6000
      RESEARCH            CLERK           1900
      RESEARCH       1981                 5975
      SALES          1981                 9400
      RESEARCH       1987                 4100
      ACCOUNTING     1981                 7450
      ACCOUNTING     1982                 1300
      RESEARCH       1980                  800
      
      15 rows selected.
      
      Elapsed: 00:00:00.01
      11:17:05 SCOTT@edw> 
      

      注意此時的含義有較大的變化

      cube、rollup作為grouping sets的參數(shù)

      grouping sets只提供單列分組,沒有合計功能,如果需要提供合計,則可以將rollup或cube作為參數(shù),例子


      11:23:59 SCOTT@edw>  SELECT a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY GROUPING sets(rollup(a.dname),ROLLUP(b.job));
      
      DNAME          JOB          SUM_SAL
      -------------- --------- ----------
                     CLERK           4150
                     SALESMAN        5600
                     PRESIDENT       5000
                     MANAGER         8275
                     ANALYST         6000
      ACCOUNTING                     8750
      RESEARCH                      10875
      SALES                          9400
                                    29025
                                    29025
      
      10 rows selected.
      
      Elapsed: 00:00:00.02
      11:24:02 SCOTT@edw> 
      

      問題是產(chǎn)生了兩個合計行,因為rollup或cube作為grouping sets參數(shù),相當(dāng)于每個rollup或cube操作的union all,等價于image這就很好理解功能了

      對于重復(fù)合計,使用distinct剔除即可,另外后面還有特殊的函數(shù)可以使用,group_id可以用來剔除重復(fù)分組(和distinct功能是不一樣的)

      rollup和cube作為參數(shù)也可以混用,而且也可以使用其它擴展功能,如部分分組、復(fù)合列分組、連接分組等

      rollup和cube不能接受grouping sets作為參數(shù),rollup和cube互相作為參數(shù)也不行

      4 組合列分組、連接分組、重置列分組

      組合列分組、連接分組在復(fù)雜報表中用處很大。組合列分組用于剔除不必要的小計保留合計,連接分組按每個分組的笛卡爾積進行操作,分組更多更細(xì)。對于常規(guī)分組滿足不了的需求可以考慮

      組合列即將多個列當(dāng)做整體對待,下列對比表可以清晰展示不同之處

      image連接分組更強大,允許group by后出現(xiàn)多個rollup、cube和grouping sets操作,這樣分組級別更多,報表更精細(xì),實現(xiàn)很復(fù)雜的需求image實際上不管是同類型的連接分組還是不通類型的連接分組之間,最后的分組級別種類都是每個擴展分組級別種類的乘積,分組級別是笛卡爾積,比如rollup(a,b),rollup(c),最終3*2=6中分組級別


      重復(fù)列分組也就是group by中允許重復(fù)列,比如group by rollup(a,(a,b))、group by a,rollup(a,b)

      組合列分組

      例子

      14:48:13 SCOTT@edw> SELECT a.dname,to_char(b.hiredate,'yyyy') hire_year,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY rollup(a.dname,(to_char(b.hiredate,'yyyy'),b.job));
      
      DNAME          HIRE JOB          SUM_SAL
      -------------- ---- --------- ----------
      SALES          1981 CLERK            950
      SALES          1981 MANAGER         2850
      SALES          1981 SALESMAN        5600
      SALES                               9400
      RESEARCH       1980 CLERK            800
      RESEARCH       1981 ANALYST         3000
      RESEARCH       1981 MANAGER         2975
      RESEARCH       1987 CLERK           1100
      RESEARCH       1987 ANALYST         3000
      RESEARCH                           10875
      ACCOUNTING     1981 MANAGER         2450
      ACCOUNTING     1981 PRESIDENT       5000
      ACCOUNTING     1982 CLERK           1300
      ACCOUNTING                          8750
                                         29025
      
      15 rows selected.
      
      Elapsed: 00:00:00.00
      14:48:16 SCOTT@edw> 
      

      組合列分組可以實現(xiàn)部分rollup和部分cube分組類似效果并且加上合計

      但是這個也比較麻煩,對于需要cube、rollup合計并剔除部分小計的需求用grouping_id或grouping函數(shù)

      cube和rollup均可以轉(zhuǎn)換為對應(yīng)的grouping sets

      當(dāng)然反向也可以,不過意義不大

      連接分組

      例子

      14:48:16 SCOTT@edw>  SELECT a.dname,to_char(b.hiredate,'yyyy') hire_year,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY rollup(a.dname,b.job),ROLLUP(to_char(b.hiredate,'yyyy'));
      
      DNAME          HIRE JOB          SUM_SAL
      -------------- ---- --------- ----------
      SALES               CLERK            950
      SALES               MANAGER         2850
      SALES               SALESMAN        5600
      SALES                               9400
      RESEARCH            CLERK           1900
      RESEARCH            ANALYST         6000
      RESEARCH            MANAGER         2975
      RESEARCH                           10875
      ACCOUNTING          CLERK           1300
      ACCOUNTING          MANAGER         2450
      ACCOUNTING          PRESIDENT       5000
      ACCOUNTING                          8750
                                         29025
      RESEARCH       1980 CLERK            800
      RESEARCH       1980                  800
                     1980                  800
      SALES          1981 CLERK            950
      SALES          1981 MANAGER         2850
      SALES          1981 SALESMAN        5600
      SALES          1981                 9400
      RESEARCH       1981 ANALYST         3000
      RESEARCH       1981 MANAGER         2975
      RESEARCH       1981                 5975
      ACCOUNTING     1981 MANAGER         2450
      ACCOUNTING     1981 PRESIDENT       5000
      ACCOUNTING     1981                 7450
                     1981                22825
      ACCOUNTING     1982 CLERK           1300
      ACCOUNTING     1982                 1300
                     1982                 1300
      RESEARCH       1987 CLERK           1100
      RESEARCH       1987 ANALYST         3000
      RESEARCH       1987                 4100
                     1987                 4100
      
      34 rows selected.
      
      Elapsed: 00:00:00.01
      14:57:57 SCOTT@edw> 
      

      相當(dāng)于兩個rollup的笛卡爾積

      理解了之后,利用連接分組,cube可以用rollup轉(zhuǎn)換,如cube(a,b,c)等于rollup(a),rollup(b),rollup(c),但是對于rollup和grouping sets轉(zhuǎn)換為cube一般沒啥用

      連接分組一般是同類型的,不通類型的連接分組一般不常用

      重復(fù)列分組

      例子

      14:57:57 SCOTT@edw>   SELECT a.dname,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY a.dname,ROLLUP(a.dname,b.job);
      
      DNAME          JOB          SUM_SAL
      -------------- --------- ----------
      SALES          CLERK            950
      SALES          MANAGER         2850
      SALES          SALESMAN        5600
      RESEARCH       CLERK           1900
      RESEARCH       ANALYST         6000
      RESEARCH       MANAGER         2975
      ACCOUNTING     CLERK           1300
      ACCOUNTING     MANAGER         2450
      ACCOUNTING     PRESIDENT       5000
      SALES                          9400
      RESEARCH                      10875
      ACCOUNTING                     8750
      SALES                          9400
      RESEARCH                      10875
      ACCOUNTING                     8750
      
      15 rows selected.
      
      Elapsed: 00:00:00.00
      15:07:14 SCOTT@edw> 
      

      沒啥意義的例子,只不過說明語法允許

      5 三個擴展分組函數(shù):grouping、grouping_id、group_id

      三個擴展分組函數(shù):grouping、grouping_id、group_id在生成有意義的報表、結(jié)果進行過濾、排序中有很重要的作用,常用于復(fù)雜的報表查詢

      注意grouping和grouping_id函數(shù)的參數(shù)不能是組合列

      grouping函數(shù)用于制作有意義的報表

      grouping_id函數(shù)對結(jié)果過濾以及排序

      group_id函數(shù)剔除重復(fù)行

      grouping函數(shù)

      在擴展group by子句來說,null表示小計或者合計,但是如果數(shù)據(jù)中本來就有null值呢?grouping函數(shù)專門處理擴展group by分組中null問題:

          它只接受一個參數(shù),且參數(shù)來自rollup、cube、grouping sets中的列。當(dāng)然也可以在group by而不在上述3個子句的列,不過結(jié)果肯定是0,沒有意義

          grouping函數(shù)對于小計或合計的列返回1,否則返回0。用于區(qū)別是否原始數(shù)據(jù)中含null,常與decode一起使用。當(dāng)然也可以確定分組級別從而過濾一些行,不過會很煩,一般用grouping_id替代

      例子

      15:34:01 SCOTT@edw>  SELECT decode(GROUPING(a.dname),1,'全部部門',a.dname) dname,decode(grouping(b.mgr),1,'全部老板',b.mgr) mgr,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY ROLLUP(a.dname,b.mgr);
      
      DNAME          MGR                                         SUM_SAL
      -------------- ---------------------------------------- ----------
      SALES          7698                                           6550
      SALES          7839                                           2850
      SALES          全部老板                                       9400
      RESEARCH       7566                                           6000
      RESEARCH       7788                                           1100
      RESEARCH       7839                                           2975
      RESEARCH       7902                                            800
      RESEARCH       全部老板                                      10875
      ACCOUNTING                                                    5000
      ACCOUNTING     7782                                           1300
      ACCOUNTING     7839                                           2450
      ACCOUNTING     全部老板                                       8750
      全部部門       全部老板                                      29025
      
      13 rows selected.
      
      Elapsed: 00:00:00.01
      15:34:12 SCOTT@edw> 
      

      grouping_id函數(shù)

      用于過濾分組級別和排序結(jié)果

      可以接受多個參數(shù),來自rollup、cube、grouping sets中的列,按列從左往右順序計算,是分組列則0,是小計或合計列為1,然后組合成為一個二進制數(shù)字叫做位向量,位向量轉(zhuǎn)化為10進制即最后的結(jié)果,代表分組級別,如cube(a,b),那么grouping_id(a,b)代表的如下

      imagegrouping_id的好處是可以對多列進行計算得到分組級別

      例子

      15:46:26 SCOTT@edw>  SELECT a.dname,b.mgr,b.job,SUM(b.sal) sum_sal FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY ROLLUP(a.dname,b.mgr,b.job) HAVING grouping_id(a.dname,b.mgr,b.job) IN (0,7);
      
      DNAME                 MGR JOB          SUM_SAL
      -------------- ---------- --------- ----------
      SALES                7698 CLERK            950
      SALES                7698 SALESMAN        5600
      SALES                7839 MANAGER         2850
      RESEARCH             7566 ANALYST         6000
      RESEARCH             7788 CLERK           1100
      RESEARCH             7839 MANAGER         2975
      RESEARCH             7902 CLERK            800
      ACCOUNTING                PRESIDENT       5000
      ACCOUNTING           7782 CLERK           1300
      ACCOUNTING           7839 MANAGER         2450
                                               29025
      
      11 rows selected.
      
      Elapsed: 00:00:00.00
      15:46:29 SCOTT@edw> 
      

      group_id函數(shù)

      group_id無參數(shù),因為擴展group by子句允許多種復(fù)雜分組操作,有時候為了實現(xiàn)復(fù)雜報表,可能出現(xiàn)重復(fù)統(tǒng)計,而group_id函數(shù)可以區(qū)分重復(fù)分組結(jié)果,第一次出現(xiàn)為0,以后每次出現(xiàn)增1,group_id在select中出現(xiàn)沒啥意義,通常用于having子句剔除重復(fù)統(tǒng)計

      例子

      15:46:29 SCOTT@edw>  SELECT a.dname,b.job,SUM(b.sal) sum_sal,group_id() gi FROM dept a,emp b WHERE a.deptno=b.deptno GROUP BY GROUPING SETS(ROLLUP(a.dname),ROLLUP(b.job)) HAVING group_id()=0;
      
      DNAME          JOB          SUM_SAL         GI
      -------------- --------- ---------- ----------
                     CLERK           4150          0
                     SALESMAN        5600          0
                     PRESIDENT       5000          0
                     MANAGER         8275          0
                     ANALYST         6000          0
      ACCOUNTING                     8750          0
      RESEARCH                      10875          0
      SALES                          9400          0
                                    29025          0
      
      9 rows selected.
      
      Elapsed: 00:00:00.01
      15:55:55 SCOTT@edw>
      
      posted @ 2020-03-23 15:59  九命貓幺  閱讀(437)  評論(0)    收藏  舉報
      主站蜘蛛池模板: 国产午夜亚洲精品福利| 婷婷综合缴情亚洲| 久久一日本综合色鬼综合色| 亚洲日本高清一区二区三区| 国内少妇人妻丰满av| 国产在线精品欧美日韩电影| 久久精品国产再热青青青| 中文字幕亚洲中文字幕无码码| 国产精品美女一区二区三| 国内自拍小视频在线看| 亚洲乱熟女一区二区三区| 人妻av无码系列一区二区三区| 99中文字幕国产精品| 午夜高清福利在线观看| 欧美性色黄大片| 老司机亚洲精品一区二区| 中文字幕日韩人妻一区| 成人亚洲性情网站www在线观看| 免费国产va在线观看| 精品亚洲一区二区三区四区| 国产精品久久欧美久久一区| 国产女人18毛片水真多1| 久久精品国产亚洲av久| 亚洲精品久久婷婷丁香51| 福利一区二区视频在线| 国产一区二区在线影院| 双腿张开被5个男人调教电影| 麻豆成人精品国产免费| 1精品啪国产在线观看免费牛牛| 亚洲精品人成网线在播放VA| 垦利县| 人人爽人人澡人人人妻| 亚洲人成电影在线天堂色| 乌鲁木齐县| 中文字幕av一区二区| 最新亚洲人成网站在线影院 | 日韩精品一二区在线观看| 无码人妻aⅴ一区二区三区蜜桃| 久久99精品久久久久久| 国产视频一区二区在线看| 日韩精品视频一二三四区|