<output id="qn6qe"></output>

    1. <output id="qn6qe"><tt id="qn6qe"></tt></output>
    2. <strike id="qn6qe"></strike>

      亚洲 日本 欧洲 欧美 视频,日韩中文字幕有码av,一本一道av中文字幕无码,国产线播放免费人成视频播放,人妻少妇偷人无码视频,日夜啪啪一区二区三区,国产尤物精品自在拍视频首页,久热这里只有精品12

      【Basic Abstract Algebra】Exercises for Section 3.5 — Fundamental Isomorphism theorem of group

      1. Let \(G=\{(a,b)\mid a,b\in\mathbb R,~a\neq0\}\) with \((a,b)(c,d)=(ac,ad+b)\) be a group, \(K=\{(1,b)\mid b\in\mathbb R\}\). Show that \(G/K\cong\mathbb R^*\).
        Proof: Let

        \[\begin{aligned} \varphi:\quad G&\to\mathbb R^*\\ (a,b)&\to a^2 \end{aligned} \]

        be a map. For any \((a,b),~(c,d)\in G\), we have

        \[\varphi((a,b)(c,d))=\varphi((ac,ad+b))=(ac)^2=a^2c^2=\varphi((a,b))\varphi((c,d)), \]

        thus \(\varphi\) is a homomorphism. For any \(y\in\mathbb R^*\), there exist \((\sqrt y,c)\in G\), s.t. \(\varphi((\sqrt{y},c))=y\). Thus, \(\text{Im}\varphi=\mathbb R^*\). By the First Isomorphism Theorem, we have \(G/\ker\varphi\cong\text{Im}\varphi=\mathbb R^*\). #

      2. Let \(m\in\mathbb Z\) and \(m>1\), \(\begin{aligned}\varphi:\quad\mathbb Z&\to\mathbb Z_m\\a&\mapsto\bar a\end{aligned}\). Prove that \(\mathbb Z/\lang m\rang\cong\mathbb Z_m\).
        Proof: For any \(a,b\in\mathbb Z\), we have

        \[\varphi(a+b)=\overline{a+b}=\bar a+\bar b=\varphi(a)+\varphi(b), \]

        so \(\varphi\) is a homomorphism. Let \(x\in\ker\varphi\), i.e., \(\varphi(x)=\bar 0\), then \(x=km\in\lang m\rang,~k\in\mathbb Z\Rightarrow \ker\varphi\subseteq\lang m\rang\). For any \(x\in\lang m\rang\), we have \(x=km,~k\in\mathbb Z\), so \(\varphi(x)=\overline{km}=\bar 0\Rightarrow \lang m\rang\subseteq \ker\varphi\). Thus, \(\ker\varphi=\lang m\rang\). And \(\text{Im}\varphi=\mathbb Z_m\). By the First Isomorphism Theorem, we have \(\mathbb Z/\lang m\rang\cong\mathbb Z_m\). #

      3. Let \(H,K\triangleleft G\), show that \(G/HK\cong(G/H)/(HK/H)\).
        Proof: For any \(hk\in HK\), where \(h\in H,~k\in K\). For any \(g\in G\), we have \(g(hk)g^{-1}=(ghg^{-1})(gkg^{-1})\). Since \(H\triangleleft G\) and \(K\triangleleft G\), we have \(ghg^{-1}\in H\) and \(gkg^{-1}\in K\), thus \(g(hk)g^{-1}\in HK\). Therefore, \(HK\triangleleft G\). Since \(H\triangleleft G\) , \(HK\triangleleft G\) and \(H\subseteq HK\), by the Third Isomorphism Theorem of groups, we have

        \[G/HK\cong(G/H)/(HK/H).\quad\# \]

      posted @ 2024-12-26 22:38  只會加減乘除  閱讀(52)  評論(0)    收藏  舉報
      主站蜘蛛池模板: 亚洲AV日韩AV永久无码下载| 亚洲尤码不卡av麻豆| 116美女极品a级毛片| 国产伦码精品一区二区| 亚洲欧洲色图片网站| 精品视频一区二区| 欧美人与动交视频在线观看| 亚洲an日韩专区在线| 男人一天堂精品国产乱码| 湛江市| 亚洲中文字幕综合小综合| caoporn成人免费公开| 亚洲成在人线AV品善网好看| 亚洲丰满老熟女激情av| 精品一区二区不卡无码AV| 朝鲜女子内射杂交bbw| 忘忧草社区在线www| 国产日韩乱码精品一区二区| 亚洲欧美人成网站在线观看看| 国产成人亚洲日韩欧美| 国产精品白嫩极品在线看| 亚洲综合一区国产精品| 国产成人欧美一区二区三区 | 天天躁日日躁狠狠躁一区| 亚洲成人av在线系列| 文山县| 国产一区二区三区美女| 国产在线视频导航| 中文字幕第一页国产| 亚洲中文字幕综合网在线| 超碰人人超碰人人| 国产激情第一区二区三区| 成人国产精品一区二区网站公司| 欧美性猛交xxxx乱大交极品| 精品人妻中文字幕有码在线| 高清中文字幕国产精品| 国产精品亚洲中文字幕| 国产精品久久无码不卡黑寡妇| 久久精品一区二区东京热| 亚洲女同精品久久女同| 粉嫩在线一区二区三区视频|