<output id="qn6qe"></output>

    1. <output id="qn6qe"><tt id="qn6qe"></tt></output>
    2. <strike id="qn6qe"></strike>

      亚洲 日本 欧洲 欧美 视频,日韩中文字幕有码av,一本一道av中文字幕无码,国产线播放免费人成视频播放,人妻少妇偷人无码视频,日夜啪啪一区二区三区,国产尤物精品自在拍视频首页,久热这里只有精品12

      【Basic Abstract Algebra】Exercises for Section 2.1 — Definitions and examples

      1. Let \(G\) be a finite group. Then the order of an element \(g\) is the smallest number \(n\) such that \(g^n=e\). Show that the order of \(g\in G\) is finite group.
        Proof: Since \(G\) is a finite group, then \(|G|<\infty\). Let

        \[S=\left\{g^k\mid k\in\mathbb N\right\}. \]

        We have \(S\subseteq G\), so \(S\) is finite. Thus there must exists \(p,q\in\mathbb N,p<q\), such that \(g^p=g^q\Rightarrow g^{q-p}=e\), where \(e\) is the identity of \(G\). Therefore, we have \(n\le q-p\) by the definition of the order of an element \(g\). Since \(q-p\) is finite, the order of \(g\) is finite. #

      2. Let \(G\) be a group with order \(|G|=n\). \(S\) is a subset of \(G\), with \(|S|>\frac{n}{2}\). Show that for any \(g\in G\), there exists \(a,b\in S\) such that \(g=ab\).
        Proof: For any \(g\in G\), construct a map

        \[\begin{aligned} f:~~&G\to G\\ &h\mapsto h^{-1}g. \end{aligned} \]

        Note that for any \(h_1,h_2\in G\), let \(f(h_1)=f(h_2)\), we have

        \[h_1^{-1}g=h_2^{-1}g\Rightarrow h_1^{-1}=h_2^{-1}\Rightarrow h_1=h_2. \]

        Thus \(f\) is injective. On the other hand, for any \(h\in G\), \(\exists gh^{-1}\), such that \(f(gh^{-1})=(gh^{-1})^{-1}g=hg^{-1}g=h\). So \(f\) is surjective. Therefore, \(f\) is bijective.

        Suppose that \(f(S)\cap S=\varnothing\), then \(|f(S)\cup S|=|f(S)|+|S|=2|S|\). However, \(f(S)\cup S\subseteq G\), it follows that \(2|S|=|f(S)\cup S|\le |G|=n\Rightarrow |S|\le \frac{n}{2}\). \(\to\leftarrow\).

        Therefore, \(f(S)\cap S\neq\varnothing\). Let \(b\in f(S)\cap S\). Clearly, \(b\in S\). Then exists \(a\in S\), such that \(f(a)=b\Rightarrow a^{-1}g=b\), i.e. \(g=ab\). #

      3. Let \(a,b\) be two elements of a group \(G\), and \(aba=ba^2b,~a^3=1,~b^{2n-1}\). Then \(b=1\).
        Proof: \(aba=ba^2b\Rightarrow aba^3=ba^2ba^2\Rightarrow ab=ba^2ba^2\Rightarrow ab^2=ba^2ba^2b=ba^2aba=b^2a\). i.e. The element \(a\) commutes with \(b^2\). Thus

        \[ab^{2n}=a \underbrace{b^2b^2\cdots b^2}_{n個}=b^2a\underbrace{b^2\cdots b^2}_{n-1個}=\cdots=\underbrace{b^2b^2\cdots b^2}_{n個}a=b^{2n}a. \]

        Therefore, \(ab=ab^{2n-1}b=b^{2n-1}ba=ba\Rightarrow ba^2b=aba=ba^2\Rightarrow(ba^2)^{-1}(ba^2)b=(ba^2)^{-1}(ba^2)=1\), i.e. \(b=1\). #

      posted @ 2024-12-09 00:10  只會加減乘除  閱讀(21)  評論(0)    收藏  舉報
      主站蜘蛛池模板: 国产一卡2卡三卡4卡免费网站| 亚洲国产码专区在线观看| 秋霞无码一区二区| 18禁无遮挡啪啪无码网站破解版| 九九热免费在线观看视频| 国产成人久久精品二区三| 人妻丝袜中文无码av影音先锋| www插插插无码免费视频网站| 99久久er这里只有精品18| 色综合天天综合网天天看片| 欧美变态另类zozo| 大伊香蕉精品一区视频在线| 精品国产大片中文字幕| 伊人久久大香线蕉av五月天| 亚洲欧洲日产国产av无码| 欧美精品人人做人人爱视频| 国产在线精品成人一区二区| 麻豆精品一区二区综合av| 亚洲男人av天堂久久资源| 国产又爽又黄的激情视频| 国产极品粉嫩福利姬萌白酱| 新野县| 国产成人精品亚洲高清在线| 人妻中文字幕一区二区视频| 国产欧美日韩高清在线不卡| 大同市| 成年女人黄小视频| bt天堂新版中文在线| 无码人妻斩一区二区三区| 18av千部影片| 亚洲熟女国产熟女二区三区| 69精品丰满人妻无码视频a片| 亚洲人妻一区二区精品| 91久久偷偷做嫩草影院免费看| 最新亚洲人成无码WWW| 欧洲女人牲交性开放视频| 亚洲一区二区三区| 亚洲天堂成人一区二区三区| 99久久久国产精品消防器材| 亚洲理论在线A中文字幕| 风韵丰满妇啪啪区老老熟女杏吧|