java-Stream的總結(jié)
JAVA中的Stream
01.什么是Stream
Stream是JDK8中引入,Stream是一個(gè)來自數(shù)據(jù)源的元素序列并支持聚合操作。可以讓你以一種聲明的方式處理數(shù)據(jù),Stream 使用一種類似用 SQL 語句從數(shù)據(jù)庫查詢數(shù)據(jù)的直觀方式來提供一種對(duì) Java 集合運(yùn)算和表達(dá)的高階抽象。Stream API可以極大提高Java程序員的生產(chǎn)力,讓程序員寫出高效率、干凈、簡(jiǎn)潔的代碼。
02.Stream特點(diǎn)
- 元素:是特定類型的對(duì)象,形成一個(gè)序列。 Java中的Stream并不會(huì)存儲(chǔ)元素,而是按需計(jì)算。
- 數(shù)據(jù)源:流的來源可以是集合,數(shù)組,I/O channel等。
- 過濾、聚合、排序等操作:類似SQL語句一樣的操作, 比如filter, map, reduce, find, match, sorted等
- Pipelining(流水線/管道): 中間操作都會(huì)返回流對(duì)象本身。 這樣多個(gè)操作可以串聯(lián)成一個(gè)管道, 如同流式風(fēng)格(fluent style)。 這樣做可以對(duì)操作進(jìn)行優(yōu)化, 比如延遲執(zhí)行(laziness)和短路( short-circuiting)。
- 內(nèi)部迭代: 以前對(duì)集合遍歷都是通過Iterator或者For-Each的方式, 顯式的在集合外部進(jìn)行迭代, 這叫做外部迭代。 Stream提供了內(nèi)部迭代的方式。
- 只能遍歷一次:數(shù)據(jù)流的從一頭獲取數(shù)據(jù)源,在流水線上依次對(duì)元素進(jìn)行操作,當(dāng)元素通過流水線,便無法再對(duì)其進(jìn)行操作

一個(gè)stream是由三部分組成的。數(shù)據(jù)源,零個(gè)或一個(gè)或多個(gè)中間操作,一個(gè)或零個(gè)終止操作。
中間操作是對(duì)數(shù)據(jù)的加工,注意:中間操作是lazy操作,并不會(huì)立馬啟動(dòng),需要等待終止操作才會(huì)執(zhí)行。
終止操作是stream的啟動(dòng)操作,只有加上終止操作,stream才會(huì)真正的開始執(zhí)行。
03.Stream入門案例
//要求把list1中的空字符串過濾掉,并把結(jié)果保存在列表中
public class Test {
public static void main(String[] args) {
List<String> list1 = Arrays.asList("ab", "", "cd", "ef", "mm","", "hh");
System.out.println(list1);//[ab, , cd, ef, mm, , hh]
List<String> result = list1.stream().filter(s -> !s.isEmpty()).collect(Collectors.toList());
System.out.println(result);//[ab, cd, ef, mm, hh]
}
}
上面這個(gè)例子可以看出list1是一個(gè)字符串的列表,其中有兩個(gè)空字符串,在stream的操作過程中,我們使用了stream()、filter()、collect()等方法,在filter()過程中,我們引入了Lambda表達(dá)式s->!s.isEmpty(),結(jié)果是把兩個(gè)空字符串過濾掉后,形成了一個(gè)新的列表result。
上面這個(gè)需求如果我們使用傳統(tǒng)的代碼完成如下:
public class Test {
public static void main(String[] args) {
List<String> list1 = Arrays.asList("ab", "", "cd", "ef", "mm","", "hh");
List<String> result = new ArrayList<>();
for (String str : list1) {
if(str.isEmpty()){
continue;
}
result.add(str);
}
System.out.println(result);
}
}
比較兩段代碼,我們可以發(fā)現(xiàn)在第二段代碼中我們自己創(chuàng)建了一個(gè)字符串對(duì)象列表,開啟一個(gè)for循環(huán)遍歷字符串對(duì)象列表,在for循環(huán)中判斷是否當(dāng)前的字符串是空串,如果不是,加到結(jié)果列表中。而在第一段程序中,我們并不需要自己開啟for循環(huán)遍歷,stream會(huì)在內(nèi)部做迭代,我們只需要傳入我們的過濾條件就可以了,最后這個(gè)字符串列表也是代碼自動(dòng)創(chuàng)建出來的,并且把結(jié)果放入了列表中,可以看出,第一段代碼簡(jiǎn)潔優(yōu)雅。
04.Stream操作分類

- 無狀態(tài):指元素的處理不受之前元素的影響;
- 有狀態(tài):指該操作只有拿到所有元素之后才能繼續(xù)下去。
- 非短路操作:指必須處理所有元素才能得到最終結(jié)果;
- 短路操作:指遇到某些符合條件的元素就可以得到最終結(jié)果,如 A || B,只要A為true,則無需判斷B的結(jié)果。
05.Stream使用案例
5.1.創(chuàng)建流
5.1.1.使用Collection下的 stream() 和 parallelStream() 方法
public class Test {
public static void main(String[] args) {
List<String> list = new ArrayList<>();
Stream<String> stream = list.stream(); //獲取一個(gè)串行流
Stream<String> parallelStream = list.parallelStream(); //獲取一個(gè)并行流
}
}
5.1.2.使用Arrays 中的 stream() 方法,將數(shù)組轉(zhuǎn)成流
public class Test {
public static void main(String[] args) {
Integer[] nums = new Integer[10];
Stream<Integer> stream = Arrays.stream(nums);
}
}
5.1.3.使用Stream中的靜態(tài)方法:of()、iterate()、generate()
public class Test {
public static void main(String[] args) {
Stream<Integer> stream = Stream.of(1,2,3,4,5,6);
stream.forEach(System.out::print);//1 2 3 4 5 6
System.out.println("==========");
Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 2).limit(6);
stream2.forEach(System.out::print); // 0 2 4 6 8 10
System.out.println("==========");
Stream<Double> stream3 = Stream.generate(Math::random).limit(2);
stream3.forEach(System.out::print);//隨機(jī)產(chǎn)生兩個(gè)小數(shù)
}
}
5.1.4.使用 BufferedReader.lines() 方法,將每行內(nèi)容轉(zhuǎn)成流
public class Test {
public static void main(String[] args) throws FileNotFoundException {
BufferedReader reader = new BufferedReader(new FileReader("d:\\study\\demo\\test_stream.txt"));
Stream<String> lineStream = reader.lines();
lineStream.forEach(System.out::println);
}
}
5.1.5.使用 Pattern.splitAsStream() 方法,將字符串分隔成流
public class Test {
public static void main(String[] args) {
Pattern pattern = Pattern.compile(",");
Stream<String> stringStream = pattern.splitAsStream("tom,jack,jerry,john");
stringStream.forEach(System.out::println);
}
}
5.2.中間操作
5.2.1.篩選與切片
- filter:過濾流中的某些元素
- limit(n):獲取n個(gè)元素
- skip(n):跳過n元素,配合limit(n)可實(shí)現(xiàn)分頁
- distinct:通過流中元素的 hashCode() 和 equals() 去除重復(fù)元素
//filter 測(cè)試
public class Test {
public static void main(String[] args) {
List<String> list = Arrays.asList("aaa", "ff", "dddd","eeeee","hhhhhhh");
//把字符串長(zhǎng)度大于3的過濾掉
Stream<String> stringStream = list.stream().filter(s -> s.length() <= 3);
stringStream.forEach(System.out::println);
System.out.println("===================");
//驗(yàn)證整個(gè)流只遍歷一次
//stream只有遇到終止操作才會(huì)觸發(fā)流啟動(dòng),中間操作都是lazy
Stream.of(1, 2, 3, 4, 5)
.filter(i -> {
System.out.println("filter1的元素:" + i);
return i > 0;
}).filter(i -> {
System.out.println("filter2的元素:" + i);
return i == 5;
}).forEach(i-> System.out.println("最后結(jié)果:"+i));
}
}
//limit 測(cè)試
public class Test {
public static void main(String[] args) {
List<String> list = Arrays.asList("aaa", "ff", "dddd","eeeee","hhhhhhh");
//取三個(gè)元素
List<String> result = list.stream().limit(3).collect(Collectors.toList());
System.out.println(result);
}
}
//limit 和 skip 測(cè)試
public class Test {
public static void main(String[] args) {
List<String> list = Arrays.asList("11", "22", "33","44","55","66","77","88","99");
//演示skip:跳過前三條記錄
list.stream().skip(3).forEach(System.out::println);
//模擬翻頁,每頁3條記錄
//第一頁
List<String> page1= list.stream().skip(0).limit(3).collect(Collectors.toList());
System.out.println(page1);
//第二頁
List<String> page2= list.stream().skip(3).limit(3).collect(Collectors.toList());
System.out.println(page2);
//第三頁
List<String> page3= list.stream().skip(6).limit(3).collect(Collectors.toList());
System.out.println(page3);
//limit和skip順序換一下
//可以看出,最終的結(jié)果會(huì)收到執(zhí)行順序的影響
List<String> page4= list.stream().limit(3).skip(1).collect(Collectors.toList());
System.out.println(page4);
}
}
//distinct去重測(cè)試
//注意:當(dāng)我們自己重寫hashcode和equals的方法的時(shí)候,要遵循一個(gè)原則:
//如果兩個(gè)對(duì)象的hashcode相等,那么用equals比較不一定相等;反之,如果兩個(gè)對(duì)象用equals比較相等,那么他們的hashcode也一定相等
public class Student {
private Integer id;
private String name;
public Student(Integer id, String name) {
this.id = id;
this.name = name;
}
public Integer getId() {
return id;
}
public void setId(Integer id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Student student = (Student) o;
return getId().equals(student.getId()) &&
getName().equals(student.getName());
}
@Override
public int hashCode() {
return Objects.hash(getId(), getName());
}
@Override
public String toString() {
return "Student{" +
"id=" + id +
", name='" + name + '\'' +
'}';
}
}
//去掉重復(fù)的student
//1.Student類的hashcode和equals包含了id和name
//2.Student類的hashcode和equals中只包含name
public class Test {
public static void main(String[] args) {
List<Student> studentList = Arrays.asList(
new Student(1, "zhangsan"),
new Student(6, "zhangsan"),
new Student(2, "lisi"),
new Student(5, "lisi"),
new Student(3, "wangwu"));
//1.學(xué)生對(duì)象去重
List<Student> result = studentList.stream().distinct().collect(Collectors.toList());
System.out.println(result);
//2.普通字符串去重
Stream<String> stringStream = Stream.of("a", "a", "b", "c", "d");
List<String> stringList = stringStream.distinct().collect(Collectors.toList());
System.out.println(stringList);
}
}
5.2.2.映射(map和flatMap)
public class Test {
public static void main(String[] args) {
//第一個(gè)例子對(duì)比
List<String> list = Arrays.asList("a,b,c", "1,2,3");
//將每個(gè)元素轉(zhuǎn)成一個(gè)新的且不帶逗號(hào)的元素
//注意:這里元素是值在list中的元素,一共有兩個(gè),分別是"a,b,c" 和"1,2,3"
//map函數(shù)傳入的lambda表達(dá)式就是我們的轉(zhuǎn)換邏輯,需要返回一個(gè)轉(zhuǎn)換之后的元素
Stream<String> s1 = list.stream().map(s -> s.replaceAll(",", ""));
s1.forEach(System.out::println); // abc 123
System.out.println("===============");
List<Integer> integerList = Arrays.asList(1, 2, 3);
integerList.stream().map(i->i*2).forEach(System.out::println);
System.out.println("===============");
//將每個(gè)元素轉(zhuǎn)換成一個(gè)stream
//注意:flatMap跟上面的map函數(shù)對(duì)比
//兩者傳入的lambda都是轉(zhuǎn)換邏輯,但是map中的lambda返回的是一個(gè)轉(zhuǎn)換后的新元素,
//flatMap可以把每一個(gè)元素進(jìn)一步處理:例如"a,b,c"進(jìn)一步分隔成a b c三個(gè)元素
//返回的是這三個(gè)元素形成的三個(gè)stream,最終把這些單獨(dú)的stream合并成一個(gè)stream返回
//總結(jié):可以看出,flatMap相比于map,它可以把每一個(gè)元素再進(jìn)一步拆分成更多的元素,
// 最后,拆分出來的元素個(gè)數(shù)會(huì)多于最初輸入的列表中的元素個(gè)數(shù)
//就這個(gè)例子而言,最初輸入兩個(gè)元素"a,b,c" 和"1,2,3",結(jié)果是6個(gè)元素 a b c 1 2 3
Stream<String> s3 = list.stream().flatMap(s -> {
String[] split = s.split(",");
Stream<String> s2 = Arrays.stream(split);
return s2;
});
s3.forEach(System.out::println); // a b c 1 2 3
System.out.println("===============");
//第二個(gè)例子(嵌套的list)[["a","b","c"],["d","e","f"],["h","k"]]
//輸出結(jié)果要求是:["A","B","C","D","E","F","G","H"]
List<List<String>> nestedList = Arrays.asList(
Arrays.asList("a","b","c"),
Arrays.asList("d","e","f"),
Arrays.asList("h","k")
);
Stream<String> s4 = nestedList.stream()
.flatMap(Collection::stream)
.map(s -> s.toUpperCase());
s4.forEach(System.out::print);
}
}
5.2.3.排序
- sorted():自然排序,流中元素需實(shí)現(xiàn)Comparable接口
- sorted(Comparator com):定制排序,自定義Comparator排序器
//字符串排序
public class Test {
public static void main(String[] args) {
List<String> list = Arrays.asList("aaa", "ff", "dddd");
//String 類自身已實(shí)現(xiàn)Compareable接口,可以按照字符的自然順序【升序】排序
list.stream().sorted().forEach(System.out::println);// aaa dddd ff
System.out.println("=====");
//給sorted函數(shù)傳入一個(gè)lambda表達(dá)式
//1.自定義排序規(guī)則,按照字符串的長(zhǎng)度【升序】排序,也就是字符串長(zhǎng)度最短的排在最前面
list.stream().sorted((s1,s2)->s1.length()-s2.length()).forEach(System.out::println);//ff aaa dddd
System.out.println("=====");
//2.自定義排序規(guī)則,按照字符串的長(zhǎng)度【降序】排序,也就是字符串長(zhǎng)度最長(zhǎng)的排在最前面
list.stream().sorted((s1,s2)->s2.length()-s1.length()).forEach(System.out::println);//dddd aaa ff
}
}
//對(duì)象排序
public class Employee {
private String name;
private Integer salary;
public Employee(String name,Integer salary) {
this.name = name;
this.salary = salary;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Integer getSalary() {
return salary;
}
public void setSalary(Integer salary) {
this.salary = salary;
}
@Override
public String toString() {
return "Employee{" +
"name='" + name + '\'' +
", salary=" + salary +
'}';
}
}
//測(cè)試類
public class Test {
public static void main(String[] args) {
List<Employee> list = Arrays.asList(
new Employee("Tom",1000),
new Employee("Jack",900),
new Employee("John",1300),
new Employee("Jack",2000)
);
//自定義排序規(guī)則,先按照名稱【升序】,如果名稱相同,再按照工資【降序】
list.stream().sorted((e1,e2)->{
if(e1.getName().equals(e2.getName())){
return e2.getSalary()-e1.getSalary();
}else{
return e1.getName().compareTo(e2.getName());
}
}).forEach(System.out::println);
//輸出結(jié)果:
// Employee{name='Jack', salary=2000}
// Employee{name='Jack', salary=900}
// Employee{name='John', salary=1300}
// Employee{name='Tom', salary=1000}
//打印原始列表,看看是否被改變,注意我們通過stream進(jìn)行排序操作,原始的列表元素順序沒有變化,也就是說我們沒有修改原始的list
System.out.println(list);
//Stream排序和集合本身的排序方法對(duì)比
//我們使用List接口本身的sort方法再來排序一下看看
list.sort((e1,e2)->{
if(e1.getName().equals(e2.getName())){
return e2.getSalary()-e1.getSalary();
}else{
return e1.getName().compareTo(e2.getName());
}
});
//排序后再次打印一下list本身,可以發(fā)現(xiàn),list本身元素的順序被修改過了
System.out.println(list);
}
}
5.2.4.消費(fèi)
peek:如同于map,能得到流中的每一個(gè)元素。但map接收的是一個(gè)Function表達(dá)式,有返回值;而peek接收的是Consumer表達(dá)式,沒有返回值。
//為Tom增加500工資
public class Test {
public static void main(String[] args) {
List<Employee> list = Arrays.asList(
new Employee("Tom",1000),
new Employee("John",1300),
new Employee("Jack",2000)
);
//如果是Tom,工資增加500
list.stream().peek(e->{
if("Tom".equals(e.getName())){
e.setSalary(500+e.getSalary());
}
}).forEach(System.out::println);
//輸出結(jié)果
// Employee{name='Tom', salary=1500}
// Employee{name='John', salary=1300}
// Employee{name='Jack', salary=2000}
}
}
5.3.終止操作
5.3.1.匹配
public class Test {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(2, 1, 3, 4, 5);
//流中所有的元素都匹配,返回true,否則返回false
boolean allMatch = list.stream().allMatch(e -> {
System.out.println(e);
return e > 10;
}); //false
System.out.println("allMatch:"+allMatch);
//流中沒有任何的元素匹配,返回true,否則返回false
boolean noneMatch = list.stream().noneMatch(e -> {
System.out.println(e);
return e > 10;
}); //true
System.out.println("noneMatch:"+noneMatch);
//流中只要有任何一個(gè)元素匹配,返回true,否則返回false
boolean anyMatch = list.stream().anyMatch(e -> {
System.out.println(e);
return e > 1;
}); //true
System.out.println("anyMatch:"+anyMatch);
//返回流的第一個(gè)元素
Integer findFirst = list.stream().findFirst().get(); //2
System.out.println("findFirst"+findFirst);
//返回流中的任意元素
Integer findAny = list.stream().findAny().get(); //2
System.out.println("findAny:"+findAny);
}
}
5.3.2.聚合
public class Test {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
//計(jì)算元素總的數(shù)量
long count = list.stream().count(); //5
System.out.println(count);
//找出最大的元素(需要傳入Lambda比較器)
Integer max = list.stream().max(Integer::compareTo).get(); //5
System.out.println(max);
//找出最小元素(需要傳入Lambda比較器)
Integer min = list.stream().min(Integer::compareTo).get(); //1
System.out.println(min);
}
}
5.3.3.歸約
在java.util.stream.Stream接口中,reduce有下面三個(gè)重載的方法
/**
第一次執(zhí)行時(shí),accumulator函數(shù)的第一個(gè)參數(shù)為流中的第一個(gè)元素,第二個(gè)參數(shù)為流中元素的第二個(gè)元素;第二次執(zhí)行時(shí),第一個(gè)參數(shù)為第一次函數(shù)執(zhí)行的結(jié)果,第二個(gè)參數(shù)為流中的第三個(gè)元素;依次類推。
*/
Optional<T> reduce(BinaryOperator<T> accumulator);
/**
流程跟上面一樣,只是第一次執(zhí)行時(shí),accumulator函數(shù)的第一個(gè)參數(shù)為identity,而第二個(gè)參數(shù)為流中的第一個(gè)元素。
*/
T reduce(T identity, BinaryOperator<T> accumulator);
/**
在串行流(stream)中,該方法跟第二個(gè)方法一樣,即第三個(gè)參數(shù)combiner不會(huì)起作用。
在并行流(parallelStream)中,我們知道流被fork join創(chuàng)建出多個(gè)線程進(jìn)行執(zhí)行,此時(shí)每個(gè)線程的執(zhí)行流程就跟第二個(gè)方法reduce(identity,accumulator)一樣,而第三個(gè)參數(shù)combiner函數(shù),則是將每個(gè)線程的執(zhí)行結(jié)果當(dāng)成一個(gè)新的流,然后使用第一個(gè)方法reduce(accumulator)流程進(jìn)行歸約。
*/
<U> U reduce(U identity,
BiFunction<U, ? super T, U> accumulator,
BinaryOperator<U> combiner);
歸約應(yīng)用舉例
public class Test {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
Integer v = list.stream().reduce((a1, a2) -> a1 + a2).get();
System.out.println("reduce計(jì)算v="+v); // 55
Integer v1 = list.stream().reduce(10, (a1, a2) -> a1 + a2);
System.out.println("reduce計(jì)算v1="+v1); //65
Integer v2 = list.stream().reduce(0,
(a1, a2) -> {
return a1 + a2;
},
(a1, a2) -> {
return 1000; //第二個(gè)表達(dá)式在串行流中無效,這里返回1000測(cè)試
});
System.out.println("reduce計(jì)算v2="+v2);
//并行流reduce傳三個(gè)參數(shù)
Integer v3 = list.parallelStream().reduce(0,
(a1, a2) -> {
System.out.println(Thread.currentThread().getName()+":parallelStream accumulator: a1:" + a1 + " a2:" + a2);
return a1 + a2;
},
(a1, a2) -> {
System.out.println(Thread.currentThread().getName()+":parallelStream combiner: a1:" + a1 + " a2:" + a2);
return a1 + a2;
});
System.out.println("并行流reduce計(jì)算v3=:"+v3);
}
}
5.3.4.收集
collect:接收一個(gè)Collector實(shí)例,將流中元素收集成另外一個(gè)數(shù)據(jù)結(jié)構(gòu)
<R, A> R collect(Collector<? super T, A, R> collector);
應(yīng)用舉例:
//創(chuàng)建一個(gè)Person類
public class Person {
private String name;
private String sex;
private Integer age;
public Person(String name, String sex, Integer age) {
this.name = name;
this.sex = sex;
this.age = age;
}
@Override
public String toString() {
return "Person{" +
"name='" + name + '\'' +
", sex='" + sex + '\'' +
", age=" + age +
'}';
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getSex() {
return sex;
}
public void setSex(String sex) {
this.sex = sex;
}
public Integer getAge() {
return age;
}
public void setAge(Integer age) {
this.age = age;
}
}
public class Test {
public static void main(String[] args) {
//1.collect(Collectors.toList()) 把流轉(zhuǎn)換成一個(gè)列表(允許重復(fù)值)
Stream<String> stringStream = Stream.of("aa","bb","dd","ee","bb");
List<String> listResult = stringStream.collect(Collectors.toList());
System.out.println(listResult);//[aa, bb, dd, ee, bb]
//2.collect(Collectors.toSet()) 把流轉(zhuǎn)換成一個(gè)集合(去重)
Stream<String> stringStream1 = Stream.of("aa","bb","dd","ee","bb");
Set<String> setResult = stringStream1.collect(Collectors.toSet());
System.out.println(setResult);//[aa, bb, dd, ee]
//3.collect(Collectors.toCollection(LinkedList::new)) 把流轉(zhuǎn)換成一個(gè)指定的集合類型(LinkedList)
Stream<String> stringStream2 = Stream.of("aa","bb","dd","ee","bb");
LinkedList<String> linkedListResult = stringStream2.collect(Collectors.toCollection(LinkedList::new));
System.out.println(linkedListResult);//[aa, bb, dd, ee, bb]
//4.collect(Collectors.toCollection(ArrayList::new)) 把流轉(zhuǎn)換成一個(gè)指定的集合類型(ArrayList)
Stream<String> stringStream3 = Stream.of("aa","bb","dd","ee","bb");
ArrayList<String> arrayListResult = stringStream3.collect(Collectors.toCollection(ArrayList::new));
System.out.println(arrayListResult);//[aa, bb, dd, ee, bb]
//5.collect(Collectors.toCollection(TreeSet::new)) 把流轉(zhuǎn)換成一個(gè)指定的集合類型(TreeSet)
Stream<String> stringStream4 = Stream.of("aa","bb","dd","ee","bb");
TreeSet<String> treeSetResult = stringStream4.collect(Collectors.toCollection(TreeSet::new));
System.out.println(treeSetResult);//[aa, bb, dd, ee]
//6.collect(Collectors.joining()) 使用joining拼接流中的元素
Stream<String> stringStream5 = Stream.of("A","B","C","D","E");
String result5 = stringStream5.collect(Collectors.joining());
System.out.println(result5);//ABCDE
//7.collect(Collectors.joining("-")) 使用joining拼接流中的元素并指定分隔符
Stream<String> stringStream6 = Stream.of("A","B","C","D","E");
String result6 = stringStream6.collect(Collectors.joining("-"));
System.out.println(result6);//A-B-C-D-E
//7.collect(Collectors.joining("-","<",">")) 使用joining拼接流中的元素并指定分隔符
Stream<String> stringStream7 = Stream.of("A","B","C","D","E");
String result7 = stringStream7.collect(Collectors.joining("-","<",">"));
System.out.println(result7);//<A-B-C-D-E>
//8.collect(Collectors.groupingBy(Person::getSex) 對(duì)person流按照性別進(jìn)行分組
Stream<Person> stringStream8 = Stream.of(
new Person("zhangsan", "男", 10),
new Person("lisi", "女", 11),
new Person("wangwu", "男", 15),
new Person("zhaoliu", "男", 12),
new Person("xiaoming", "女", 13)
);
Map<String, List<Person>> resultMap1 = stringStream8.collect(Collectors.groupingBy(Person::getSex));
System.out.println(resultMap1.toString());//{女=[Person{name='lisi', sex='女', age=11}, Person{name='xiaoming', sex='女', age=13}], 男=[Person{name='zhangsan', sex='男', age=10}, Person{name='wangwu', sex='男', age=15}, Person{name='zhaoliu', sex='男', age=12}]}
//9.collect(Collectors.groupingBy(Person::getSex, Collectors.mapping(Person::getName, Collectors.toList())))
// 對(duì)person流按照性別進(jìn)行分組,并且把每一組對(duì)象流中人員的姓名轉(zhuǎn)成列表
Stream<Person> stringStream9 = Stream.of(
new Person("zhangsan", "男", 10),
new Person("lisi", "女", 11),
new Person("wangwu", "男", 15),
new Person("zhaoliu", "男", 12),
new Person("xiaoming", "女", 13)
);
Map<String, List<String>> listMap = stringStream9.collect(
Collectors.groupingBy(Person::getSex, Collectors.mapping(Person::getName, Collectors.toList()))
);
System.out.println(listMap.toString());//{女=[lisi, xiaoming], 男=[zhangsan, wangwu, zhaoliu]}
//10.collect(Collectors.groupingBy(Person::getSex, Collectors.mapping(Person::getAge, Collectors.maxBy(Integer::compareTo))))
// 對(duì)person流按照性別進(jìn)行分組,并統(tǒng)計(jì)每一組中年齡最大的人的年齡
Stream<Person> stringStream10 = Stream.of(
new Person("zhangsan", "男", 10),
new Person("lisi", "女", 11),
new Person("wangwu", "男", 15),
new Person("zhaoliu", "男", 12),
new Person("xiaoming", "女", 13)
);
Map<String, Optional<Integer>> listMap1 = stringStream10.collect(
Collectors.groupingBy(Person::getSex, Collectors.mapping(Person::getAge, Collectors.maxBy(Integer::compareTo)))
);
System.out.println(listMap1.toString());//{女=Optional[13], 男=Optional[15]}
//11.collect(
// Collectors.groupingBy(Person::getName,
// Collectors.reducing(BinaryOperator.maxBy(Comparator.comparingInt(Person::getAge)))
// )
//對(duì)person流按照性別進(jìn)行分組,并統(tǒng)計(jì)每一組中年齡最大的人
//這個(gè)案例使用了groupingBy和reducing組合
Stream<Person> stringStream111 = Stream.of(
new Person("zhangsan", "男", 10),
new Person("lisi", "女", 11),
new Person("zhangsan", "男", 15),
new Person("zhaoliu", "男", 12),
new Person("lisi", "女", 13)
);
Map<String, Optional<Person>> resultMap111 = stringStream111.collect(
Collectors.groupingBy(Person::getSex,
Collectors.reducing(BinaryOperator.maxBy(Comparator.comparingInt(Person::getAge)))
)
);
System.out.println(resultMap111.toString());//{女=Optional[Person{name='lisi', sex='女', age=13}], 男=Optional[Person{name='zhangsan', sex='男', age=15}]}
//12.collect(Collectors.groupingBy(Person::getSex,
// Collectors.reducing(0,Person::getAge,(x,y)->x+y)
// )
// )
//對(duì)person流按照性別進(jìn)行分組,并統(tǒng)計(jì)每一組人員年齡和
Stream<Person> stringStream121 = Stream.of(
new Person("zhangsan", "男", 10),
new Person("lisi", "女", 11),
new Person("zhangsan", "男", 15),
new Person("zhaoliu", "男", 12),
new Person("lisi", "女", 13)
);
Map<String, Integer> resultMap121 = stringStream121.collect(
Collectors.groupingBy(Person::getSex,
Collectors.reducing(0,Person::getAge,(x,y)->x+y)
)
);
/*上面這段如果不使用reducing,還可以用下面這中方式完成
Map<String, Integer> resultMap121 = stringStream121.collect(
Collectors.groupingBy(Person::getSex, Collectors.summingInt(Person::getAge))
);*/
System.out.println(resultMap121.toString());//{女=24, 男=37}
//12.collect(Collectors.groupingBy(Person::getName, TreeMap::new, Collectors.toList()))
// 對(duì)person流按照name進(jìn)行分組,結(jié)果轉(zhuǎn)成TreeMap,key是name,value是這個(gè)組的對(duì)象列表
//groupingBy的第一個(gè)參數(shù)就是獲取分組的屬性,第二個(gè)參數(shù)指定返回類型,第三個(gè)是把每個(gè)分組里面的對(duì)象元素轉(zhuǎn)成一個(gè)列表
Stream<Person> stringStream11 = Stream.of(
new Person("zhangsan", "男", 10),
new Person("lisi", "女", 11),
new Person("zhangsan", "男", 15),
new Person("lisi", "男", 12),
new Person("xiaoming", "女", 13)
);
TreeMap<String, List<Person>> listMap2 = stringStream11.collect(
Collectors.groupingBy(Person::getName, TreeMap::new, Collectors.toList())
);
System.out.println(listMap2.toString());//{lisi=[Person{name='lisi', sex='女', age=11}, Person{name='lisi', sex='男', age=12}], xiaoming=[Person{name='xiaoming', sex='女', age=13}], zhangsan=[Person{name='zhangsan', sex='男', age=10}, Person{name='zhangsan', sex='男', age=15}]}
//13.collect(Collectors.collectingAndThen(
// Collectors.toCollection(() -> new TreeSet<>(Comparator.comparing(Person::getName))),
// ArrayList::new))
//對(duì)Person流先通過TreeSet去重,去重的比較屬性是name,然后在把這個(gè)TreeSet中的元素轉(zhuǎn)換成ArrayList
Stream<Person> stringStream12 = Stream.of(
new Person("lisi", "女", 11),
new Person("lisi", "女", 11),
new Person("zhangsan", "男", 15),
new Person("zhangsan", "男", 15),
new Person("xiaoming", "女", 13)
);
List<Person> list = stringStream12.collect(Collectors.collectingAndThen(
Collectors.toCollection(() -> new TreeSet<>(Comparator.comparing(Person::getName))),
ArrayList::new));//這里的ArrayList::new等同于pset->new ArrayList(pset),是把前面生成的TreeSet賦值給ArrayList構(gòu)造函數(shù)
System.out.println(list);//[Person{name='lisi', sex='女', age=11}, Person{name='xiaoming', sex='女', age=13}, Person{name='zhangsan', sex='男', age=15}]
//14.collect(Collectors.groupingBy(Person::getName, Collectors.summingInt(Person::getAge)))
// 對(duì)person流按照姓名進(jìn)行分組,并對(duì)每一個(gè)組內(nèi)的人員的年齡求和
Stream<Person> stringStream13 = Stream.of(
new Person("zhangsan", "男", 10),
new Person("zhangsan", "女", 11),
new Person("lisi", "男", 15),
new Person("zhaoliu", "男", 12),
new Person("lisi", "女", 13)
);
Map<String, Integer> resultMap2 = stringStream13.collect(Collectors.groupingBy(Person::getName, Collectors.summingInt(Person::getAge)));
System.out.println(resultMap2.toString());//{lisi=28, zhaoliu=12, zhangsan=21}
//15.collect(Collectors.groupingBy(Person::getName, Collectors.averagingInt(Person::getAge)))
// 對(duì)person流按照姓名進(jìn)行分組,并對(duì)每一個(gè)組內(nèi)的人員的年齡求平均值
Stream<Person> stringStream14 = Stream.of(
new Person("zhangsan", "男", 10),
new Person("zhangsan", "女", 11),
new Person("lisi", "男", 15),
new Person("zhaoliu", "男", 12),
new Person("lisi", "女", 13)
);
Map<String, Double> resultMap3 = stringStream14.collect(Collectors.groupingBy(Person::getName, Collectors.averagingInt(Person::getAge)));
System.out.println(resultMap3.toString());//{lisi=14.0, zhaoliu=12.0, zhangsan=10.5}
//16.parallel().collect(
// Collectors.groupingByConcurrent(Person::getSex, Collectors.summingInt(Person::getAge))
// )
//使用并行流,把人員按照性別分組,計(jì)算每一組中的年齡和,返回的類型是ConcurrentMap,保證線程安全
Stream<Person> stringStream16 = Stream.of(
new Person("zhangsan", "男", 10),
new Person("zhangsan", "女", 11),
new Person("lisi", "男", 15),
new Person("zhaoliu", "男", 12),
new Person("zhaoliu", "男", 16),
new Person("zhaoliu", "男", 17),
new Person("lisi", "女", 13));
ConcurrentMap<String, Integer> resultMap4 = stringStream16.parallel().collect(
Collectors.groupingByConcurrent(Person::getSex, Collectors.summingInt(Person::getAge))
);
System.out.println(resultMap4.toString());//{女=24, 男=70}
//17.collect(Collectors.partitioningBy(p -> p.getAge() > 12))
//把流中元素根據(jù)年齡是否大于12分成兩組,保存在Map中,key是true或者false,value是對(duì)象列表
Stream<Person> stringStream17 = Stream.of(
new Person("zhangsan", "女", 11),
new Person("wangwu", "男", 10),
new Person("lisi", "男", 15),
new Person("zhaoliu", "女", 13));
Map<Boolean, List<Person>> resultMap5 = stringStream17.collect(Collectors.partitioningBy(p -> p.getAge() > 12));
System.out.println(resultMap5.toString());//{false=[Person{name='zhangsan', sex='女', age=11}], true=[Person{name='lisi', sex='男', age=15}, Person{name='lisi', sex='女', age=13}]}
//18.collect(Collectors.partitioningBy(p -> p.getAge() > 12,Collectors.summingInt(Person::getAge)))
//把流中元素根據(jù)年齡是否大于12分成兩組,保存在Map中,key是true或者false,每一組的年齡的和
Stream<Person> stringStream18 = Stream.of(
new Person("zhangsan", "女", 11),
new Person("wangwu", "男", 10),
new Person("lisi", "男", 15),
new Person("zhaoliu", "女", 13));
Map<Boolean, Integer> resultMap6 = stringStream18.collect(Collectors.partitioningBy(p -> p.getAge() > 12,Collectors.summingInt(Person::getAge)));
System.out.println(resultMap6.toString());//{false=21, true=28}
//19.Collectors.toMap:有兩個(gè)參數(shù)的toMap方法,流中對(duì)象的key是不允許存在相同的,否則報(bào)錯(cuò)
//toMap的第二個(gè)參數(shù)需要?jiǎng)?chuàng)建一個(gè)列表,并且key對(duì)應(yīng)的元素對(duì)象放入列表
Stream<Person> stringStream19 = Stream.of(
new Person("zhangsan", "女", 11),
new Person("zhaoliu", "女", 13));
Map<String, List<Person>> resultMap7 = stringStream19.collect(Collectors.toMap(Person::getName, p -> {
List<Person> personList = new ArrayList<>();
personList.add(p);
return personList;
}));
System.out.println(resultMap7.toString());//{zhaoliu=[Person{name='zhaoliu', sex='女', age=13}], zhangsan=[Person{name='zhangsan', sex='女', age=11}]}
//20.Collectors.toMap:有兩個(gè)參數(shù)的toMap方法,流中對(duì)象的key是不允許存在相同的,否則報(bào)錯(cuò)
//toMap的第二個(gè)參數(shù)直接使用流中的對(duì)象作為key所對(duì)應(yīng)的value
Stream<Person> stringStream20 = Stream.of(
new Person("zhangsan", "女", 11),
new Person("zhaoliu", "女", 13));
Map<String, Person> resultMap8 = stringStream20.collect(Collectors.toMap(Person::getName, p -> p));
System.out.println(resultMap8.toString());//{zhaoliu=Person{name='zhaoliu', sex='女', age=13}, zhangsan=Person{name='zhangsan', sex='女', age=11}}
//21.Collectors.toMap:有三個(gè)參數(shù)的toMap方法,流中對(duì)象的key是允許存在相同的,
// 第三個(gè)參數(shù)表示key重復(fù)的處理方式(這里是把重復(fù)的key對(duì)應(yīng)的value用新的替換老的)
//toMap的第二個(gè)參數(shù)直接使用流中的對(duì)象作為key所對(duì)應(yīng)的value
Stream<Person> stringStream21 = Stream.of(
new Person("zhangsan", "女", 11),
new Person("zhangsan", "男", 12),
new Person("zhaoliu", "男", 13)
);
Map<String, Person> resultMap9 = stringStream21.collect(
Collectors.toMap(Person::getName,
p -> p,
(oldPerson,newPerson)->newPerson
)
);
System.out.println(resultMap9.toString());//{zhaoliu=[Person{name='zhaoliu', sex='男', age=13}], zhangsan=[Person{name='zhangsan', sex='女', age=11}, Person{name='zhangsan', sex='女', age=11}]}
//22.Collectors.toMap:有三個(gè)參數(shù)的toMap方法,流中對(duì)象的key是允許存在相同的,第三個(gè)參數(shù)表示key重復(fù)的處理方式(這里是把重復(fù)的key對(duì)應(yīng)的value放入列表)
//toMap的第二個(gè)參數(shù)直接使用流中的對(duì)象作為key所對(duì)應(yīng)的value
Stream<Person> stringStream22 = Stream.of(
new Person("zhangsan", "女", 11),
new Person("zhangsan", "女", 11),
new Person("zhaoliu", "男", 13)
);
Map<String, List<Person>> resultMap10 = stringStream22.collect(
Collectors.toMap(Person::getName,
p -> {
List<Person> personList = new ArrayList<>();
personList.add(p);
return personList;
},
(oldList,newList)->{
oldList.addAll(newList);
return oldList;
})
);
System.out.println(resultMap10.toString());//{zhaoliu=[Person{name='zhaoliu', sex='男', age=13}], zhangsan=[Person{name='zhangsan', sex='女', age=11}, Person{name='zhangsan', sex='女', age=11}]}
//23.Collectors.toMap:有四個(gè)參數(shù)的toMap方法,流中對(duì)象的key是允許存在相同的,
//toMap的第二個(gè)參數(shù)直接使用流中的對(duì)象作為key所對(duì)應(yīng)的value
//第三個(gè)參數(shù)表示key重復(fù)的處理方式(這里是把重復(fù)的key對(duì)應(yīng)的value放入列表)
//第四個(gè)參數(shù)可以指定一個(gè)返回的Map具體類型
Stream<Person> stringStream23 = Stream.of(
new Person("zhangsan", "女", 11),
new Person("zhangsan", "女", 11),
new Person("zhaoliu", "男", 13)
);
Map<String, List<Person>> resultMap11 = stringStream23.collect(
Collectors.toMap(Person::getName,
p -> {
List<Person> personList = new ArrayList<>();
personList.add(p);
return personList;
},
(oldList,newList)->{
oldList.addAll(newList);
return oldList;
},
LinkedHashMap::new
)
);
System.out.println(resultMap11.toString());//{zhangsan=[Person{name='zhangsan', sex='女', age=11}, Person{name='zhangsan', sex='女', age=11}], zhaoliu=[Person{name='zhaoliu', sex='男', age=13}]}
//24.Collectors.summarizingInt((a -> a.getAge()))
//針對(duì)Integer類型的元素進(jìn)行匯總計(jì)算
//得到1、元素?cái)?shù)量 2、元素的和 3、元素的最大值 4、元素的最小值 5、平均值
Stream<Person> personStream24=Stream.of(
new Person("zhangsan", "女", 11),
new Person("zhangsan", "女", 25),
new Person("zhaoliu", "男", 13)
);
IntSummaryStatistics intSummaryStatistics = personStream24.collect(Collectors.summarizingInt((a -> a.getAge())));
System.out.println(intSummaryStatistics);//IntSummaryStatistics{count=3, sum=49, min=11, average=16.333333, max=25}
}
}


浙公網(wǎng)安備 33010602011771號(hào)