基于Python的地圖繪制教程
本文將介紹通過Python繪制地形圖的方法,所需第三方Python相關模塊包括 rasterio、geopandas、cartopy 等,可通過 pip 等方式安裝。
1 示例代碼
1.1 導入相關模塊
import rasterio
import geopandas as gpd
import numpy as np
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
1.2 設置地圖字體及字號
plt.rcParams["font.family"] = "Times New Roman"
plt.rcParams["font.size"] = 14
1.3 繪制地圖
# 設置投影:墨卡托投影
# cartopy 投影說明:http://www.rzrgm.cn/youxiaogang/p/14247184.html
projection = ccrs.Mercator()
# 繪制地圖
fig, ax = plt.subplots(figsize=(20, 10), subplot_kw={'projection': projection})
# 設置地圖范圍(數值參數為對應投影下的范圍坐標)
ax.set_extent([13530000, 14630000, 4960000, 5850000], crs=projection)
# 讀取矢量文件
shp = gpd.read_file("Data/Jilin_Mercator.shp")
shp.plot(ax=ax, transform=projection, edgecolor="black", linewidth=1, facecolor="none")
# 創建自定義顏色映射
colors = ["#369121", "#95C769", "#FFFFBF", "#E6865A", "#D14E30", "#BA1414"]
n_bins = 100 # 定義色帶的顏色數量
cmap_name = "green_brown"
cm = LinearSegmentedColormap.from_list(cmap_name, colors, N=n_bins)
# 讀取地形柵格數據
dataset = rasterio.open("Data/DEM_Jilin_Mercator.tif")
data = dataset.read(1) # 讀取第一個波段的數據
nodata_value = dataset.nodata # 獲取NoData值
# 創建掩膜,去除NoData區域
data = np.ma.masked_where(data == nodata_value, data)
# 將地形柵格添加到地圖中
extent = [dataset.bounds.left, dataset.bounds.right,
dataset.bounds.bottom, dataset.bounds.top]
im = ax.imshow(data, origin="upper", extent=extent,
transform=projection, cmap=cm)
# 繪制網格線并添加標簽
gl = ax.gridlines(draw_labels=True, linestyle="--", color="#4F4F4F")
gl.xlocator = plt.FixedLocator(range(120, 135, 3))
gl.ylocator = plt.FixedLocator(range(40, 50, 2))
# 添加色帶,設置色帶的縮放比例為 0.4,主圖和色帶之間的間距為 0.1
cbar = plt.colorbar(im, ax=ax, orientation="horizontal", shrink=0.4, pad=0.1)
cbar.set_label("Elevation (m)", labelpad=10) # 設置色帶標簽與色帶的距離為 10 點
cbar.ax.xaxis.set_label_position("top") # 設置色帶標簽位置
plt.savefig("Pic.jpg", dpi=600)
plt.show()
2 結果圖展示

浙公網安備 33010602011771號