chatgpt使用記錄
網址:http://chat.yangxiwl.cn/chatbotai/1002?channel=bdtoufangChatztHD3
寫一個java程序,要求將kafka的數據消費批量插入的clickhouse數據庫
你可以使用Kafka的Java客戶端庫和ClickHouse的Java驅動來實現將Kafka數據消費并批量插入到ClickHouse數據庫中的功能。以下是一個簡單的示例程序:
import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.common.serialization.StringDeserializer; import ru.yandex.clickhouse.BalancedClickhouseDataSource; import ru.yandex.clickhouse.ClickHouseConnection; import ru.yandex.clickhouse.ClickHousePreparedStatement; import ru.yandex.clickhouse.settings.ClickHouseProperties; import java.sql.SQLException; import java.util.*; public class KafkaToClickHouse { public static void main(String[] args) { // Kafka配置 Properties kafkaProps = new Properties(); kafkaProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); kafkaProps.put(ConsumerConfig.GROUP_ID_CONFIG, "clickhouse-consumer"); kafkaProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); kafkaProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); kafkaProps.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest"); // ClickHouse配置 ClickHouseProperties clickHouseProps = new ClickHouseProperties(); clickHouseProps.setHost("localhost"); clickHouseProps.setPort(8123); clickHouseProps.setDatabase("your_database_name"); clickHouseProps.setUser("your_username"); clickHouseProps.setPassword("your_password"); // Kafka消費者 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(kafkaProps); consumer.subscribe(Collections.singletonList("your_topic_name")); // ClickHouse連接池 BalancedClickhouseDataSource dataSource = new BalancedClickhouseDataSource("jdbc:clickhouse://", clickHouseProps); // 消費并插入數據 try (ClickHouseConnection connection = dataSource.getConnection(); ClickHousePreparedStatement stmt = connection.prepareStatement("INSERT INTO your_table_name (col1, col2) VALUES (?, ?)")) { while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord<String, String> record : records) { String[] data = record.value().split(","); // 假設數據格式為逗號分隔的兩列 stmt.setString(1, data[0]); stmt.setString(2, data[1]); stmt.addBatch(); } stmt.executeBatch(); } } catch (SQLException e) { e.printStackTrace(); } finally { consumer.close(); dataSource.close(); } } }
下面是一個示例程序,它將Kafka的數據按照每100條記錄進行批量插入到ClickHouse數據庫,并在每個批次結束后提交事務
import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.common.serialization.StringDeserializer; import ru.yandex.clickhouse.BalancedClickhouseDataSource; import ru.yandex.clickhouse.ClickHouseConnection; import ru.yandex.clickhouse.ClickHousePreparedStatement; import ru.yandex.clickhouse.settings.ClickHouseProperties; import java.sql.SQLException; import java.time.Duration; import java.util.ArrayList; import java.util.List; import java.util.Properties; public class KafkaToClickHouse { public static void main(String[] args) { // Kafka配置 Properties kafkaProps = new Properties(); kafkaProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); kafkaProps.put(ConsumerConfig.GROUP_ID_CONFIG, "clickhouse-consumer"); kafkaProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); kafkaProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); kafkaProps.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 100); // 每次最多拉取100條記錄 // ClickHouse配置 ClickHouseProperties clickHouseProps = new ClickHouseProperties(); clickHouseProps.setHost("localhost"); clickHouseProps.setPort(8123); clickHouseProps.setDatabase("your_database_name"); clickHouseProps.setUser("your_username"); clickHouseProps.setPassword("your_password"); // Kafka消費者 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(kafkaProps); consumer.subscribe(Collections.singletonList("your_topic_name")); // ClickHouse連接池 BalancedClickhouseDataSource dataSource = new BalancedClickhouseDataSource("jdbc:clickhouse://", clickHouseProps); // 消費并插入數據 try (ClickHouseConnection connection = dataSource.getConnection()) { List<String> batch = new ArrayList<>(); while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord<String, String> record : records) { String[] data = record.value().split(","); // 假設數據格式為逗號分隔的兩列 String row = String.format("('%s', '%s')", data[0], data[1]); batch.add(row); } if (batch.size() >= 100) { insertBatch(connection, batch); batch.clear(); } } } catch (SQLException e) { e.printStackTrace(); } finally { consumer.close(); dataSource.close(); } } private static void insertBatch(ClickHouseConnection connection, List<String> batch) throws SQLException { try (ClickHousePreparedStatement stmt = connection.prepareStatement("INSERT INTO your_table_name (col1, col2) VALUES " + String.join(",", batch))) { stmt.execute(); } } }
如何實現批量提交的同時避免重復插入
import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.common.serialization.StringDeserializer; import ru.yandex.clickhouse.BalancedClickhouseDataSource; import ru.yandex.clickhouse.ClickHouseConnection; import ru.yandex.clickhouse.ClickHousePreparedStatement; import ru.yandex.clickhouse.settings.ClickHouseProperties; import java.sql.SQLException; import java.time.Duration; import java.util.*; public class KafkaToClickHouse { public static void main(String[] args) { // Kafka配置 Properties kafkaProps = new Properties(); kafkaProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); kafkaProps.put(ConsumerConfig.GROUP_ID_CONFIG, "clickhouse-consumer"); kafkaProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); kafkaProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); kafkaProps.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 100); // 每次最多拉取100條記錄 // ClickHouse配置 ClickHouseProperties clickHouseProps = new ClickHouseProperties(); clickHouseProps.setHost("localhost"); clickHouseProps.setPort(8123); clickHouseProps.setDatabase("your_database_name"); clickHouseProps.setUser("your_username"); clickHouseProps.setPassword("your_password"); // Kafka消費者 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(kafkaProps); consumer.subscribe(Collections.singletonList("your_topic_name")); // ClickHouse連接池 BalancedClickhouseDataSource dataSource = new BalancedClickhouseDataSource("jdbc:clickhouse://", clickHouseProps); // 消費并插入數據 try (ClickHouseConnection connection = dataSource.getConnection()) { List<String> batch = new ArrayList<>(); while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord<String, String> record : records) { String[] data = record.value().split(","); // 假設數據格式為逗號分隔的兩列 String row = String.format("('%s', '%s')", data[0], data[1]); batch.add(row); } if (batch.size() >= 100) { insertBatch(connection, batch); batch.clear(); } } } catch (SQLException e) { e.printStackTrace(); } finally { consumer.close(); dataSource.close(); } } private static void insertBatch(ClickHouseConnection connection, List<String> batch) throws SQLException { try (ClickHousePreparedStatement stmt = connection.prepareStatement("INSERT INTO your_table_name (col1, col2) VALUES " + String.join(",", batch))) { stmt.execute(); } catch (SQLException e) { // 處理重復插入的異常 if (e.getMessage().contains("Code: 409")) { // 重復插入數據,可以忽略或者進行其他處理 } else { throw e; } } } }
浙公網安備 33010602011771號