<output id="qn6qe"></output>

    1. <output id="qn6qe"><tt id="qn6qe"></tt></output>
    2. <strike id="qn6qe"></strike>

      亚洲 日本 欧洲 欧美 视频,日韩中文字幕有码av,一本一道av中文字幕无码,国产线播放免费人成视频播放,人妻少妇偷人无码视频,日夜啪啪一区二区三区,国产尤物精品自在拍视频首页,久热这里只有精品12

      perf_event_open學習 —— design

      Performance Counters for Linux

      Performance counters are special hardware registers available on most modern
      CPUs. These registers count the number of certain types of hw events: such
      as instructions executed, cachemisses suffered, or branches mis-predicted -
      without slowing down the kernel or applications. These registers can also
      trigger interrupts when a threshold number of events have passed - and can
      thus be used to profile the code that runs on that CPU.

      The Linux Performance Counter subsystem provides an abstraction of these
      hardware capabilities. It provides per task and per CPU counters, counter
      groups, and it provides event capabilities on top of those. It
      provides "virtual" 64-bit counters, regardless of the width of the
      underlying hardware counters.

      Performance counters are accessed via special file descriptors.
      There's one file descriptor per virtual counter used.

      The special file descriptor is opened via the sys_perf_event_open()
      system call:

      int sys_perf_event_open(struct perf_event_attr *hw_event_uptr,
      pid_t pid, int cpu, int group_fd,
      unsigned long flags);

      The syscall returns the new fd. The fd can be used via the normal
      VFS system calls: read() can be used to read the counter, fcntl()
      can be used to set the blocking mode, etc.

      Multiple counters can be kept open at a time, and the counters
      can be poll()ed.

      When creating a new counter fd, 'perf_event_attr' is:

      struct perf_event_attr {
              /*
               * The MSB of the config word signifies if the rest contains cpu
               * specific (raw) counter configuration data, if unset, the next
               * 7 bits are an event type and the rest of the bits are the event
               * identifier.
               */
              __u64                   config;
      
              __u64                   irq_period;
              __u32                   record_type;
              __u32                   read_format;
      
              __u64                   disabled       :  1, /* off by default        */
                                      inherit        :  1, /* children inherit it   */
                                      pinned         :  1, /* must always be on PMU */
                                      exclusive      :  1, /* only group on PMU     */
                                      exclude_user   :  1, /* don't count user      */
                                      exclude_kernel :  1, /* ditto kernel          */
                                      exclude_hv     :  1, /* ditto hypervisor      */
                                      exclude_idle   :  1, /* don't count when idle */
                                      mmap           :  1, /* include mmap data     */
                                      munmap         :  1, /* include munmap data   */
                                      comm           :  1, /* include comm data     */
      
                                      __reserved_1   : 52;
      
              __u32                   extra_config_len;
              __u32                   wakeup_events;  /* wakeup every n events */
      
              __u64                   __reserved_2;
              __u64                   __reserved_3;
      };
      

      The 'config' field specifies what the counter should count. It
      is divided into 3 bit-fields:

      raw_type: 1 bit   (most significant bit)	0x8000_0000_0000_0000
      type:	  7 bits  (next most significant)	0x7f00_0000_0000_0000
      event_id: 56 bits (least significant)		0x00ff_ffff_ffff_ffff
      

      If 'raw_type' is 1, then the counter will count a hardware event
      specified by the remaining 63 bits of event_config. The encoding is
      machine-specific.

      If 'raw_type' is 0, then the 'type' field says what kind of counter
      this is, with the following encoding:

      enum perf_type_id {
      	PERF_TYPE_HARDWARE		= 0,
      	PERF_TYPE_SOFTWARE		= 1,
      	PERF_TYPE_TRACEPOINT		= 2,
      };
      

      A counter of PERF_TYPE_HARDWARE will count the hardware event
      specified by 'event_id':

      /*
       * Generalized performance counter event types, used by the hw_event.event_id
       * parameter of the sys_perf_event_open() syscall:
       */
      enum perf_hw_id {
      	/*
      	 * Common hardware events, generalized by the kernel:
      	 */
      	PERF_COUNT_HW_CPU_CYCLES		= 0,
      	PERF_COUNT_HW_INSTRUCTIONS		= 1,
      	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
      	PERF_COUNT_HW_CACHE_MISSES		= 3,
      	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
      	PERF_COUNT_HW_BRANCH_MISSES		= 5,
      	PERF_COUNT_HW_BUS_CYCLES		= 6,
      	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
      	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
      	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
      };
      

      These are standardized types of events that work relatively uniformly
      on all CPUs that implement Performance Counters support under Linux,
      although there may be variations (e.g., different CPUs might count
      cache references and misses at different levels of the cache hierarchy).
      If a CPU is not able to count the selected event, then the system call
      will return -EINVAL.

      More hw_event_types are supported as well, but they are CPU-specific
      and accessed as raw events. For example, to count "External bus
      cycles while bus lock signal asserted" events on Intel Core CPUs, pass
      in a 0x4064 event_id value and set hw_event.raw_type to 1.

      A counter of type PERF_TYPE_SOFTWARE will count one of the available
      software events, selected by 'event_id':

      /*
       * Special "software" counters provided by the kernel, even if the hardware
       * does not support performance counters. These counters measure various
       * physical and sw events of the kernel (and allow the profiling of them as
       * well):
       */
      enum perf_sw_ids {
      	PERF_COUNT_SW_CPU_CLOCK		= 0,
      	PERF_COUNT_SW_TASK_CLOCK	= 1,
      	PERF_COUNT_SW_PAGE_FAULTS	= 2,
      	PERF_COUNT_SW_CONTEXT_SWITCHES	= 3,
      	PERF_COUNT_SW_CPU_MIGRATIONS	= 4,
      	PERF_COUNT_SW_PAGE_FAULTS_MIN	= 5,
      	PERF_COUNT_SW_PAGE_FAULTS_MAJ	= 6,
      	PERF_COUNT_SW_ALIGNMENT_FAULTS	= 7,
      	PERF_COUNT_SW_EMULATION_FAULTS	= 8,
      };
      

      Counters of the type PERF_TYPE_TRACEPOINT are available when the ftrace event
      tracer is available, and event_id values can be obtained from
      /debug/tracing/events/*/*/id

      Counters come in two flavours: counting counters and sampling
      counters
      . A "counting" counter is one that is used for counting the
      number of events that occur, and is characterised by having
      irq_period = 0.

      A read() on a counter returns the current value of the counter and possible
      additional values as specified by 'read_format', each value is a u64 (8 bytes)
      in size.

      /*
       * Bits that can be set in hw_event.read_format to request that
       * reads on the counter should return the indicated quantities,
       * in increasing order of bit value, after the counter value.
       */
      enum perf_event_read_format {
              PERF_FORMAT_TOTAL_TIME_ENABLED  =  1,
              PERF_FORMAT_TOTAL_TIME_RUNNING  =  2,
      };
      

      Using these additional values one can establish the overcommit ratio for a
      particular counter allowing one to take the round-robin scheduling effect
      into account.

      A "sampling" counter is one that is set up to generate an interrupt
      every N events, where N is given by 'irq_period'. A sampling counter
      has irq_period > 0. The record_type controls what data is recorded on each
      interrupt:

      /*
       * Bits that can be set in hw_event.record_type to request information
       * in the overflow packets.
       */
      enum perf_event_record_format {
              PERF_RECORD_IP          = 1U << 0,
              PERF_RECORD_TID         = 1U << 1,
              PERF_RECORD_TIME        = 1U << 2,
              PERF_RECORD_ADDR        = 1U << 3,
              PERF_RECORD_GROUP       = 1U << 4,
              PERF_RECORD_CALLCHAIN   = 1U << 5,
      };
      

      Such (and other) events will be recorded in a ring-buffer, which is
      available to user-space using mmap() (see below).

      The 'disabled' bit specifies whether the counter starts out disabled
      or enabled. If it is initially disabled, it can be enabled by ioctl
      or prctl (see below).

      The 'inherit' bit, if set, specifies that this counter should count
      events on descendant tasks as well as the task specified. This only
      applies to new descendents, not to any existing descendents at the
      time the counter is created (nor to any new descendents of existing
      descendents).

      The 'pinned' bit, if set, specifies that the counter should always be
      on the CPU if at all possible. It only applies to hardware counters
      and only to group leaders. If a pinned counter cannot be put onto the
      CPU (e.g. because there are not enough hardware counters or because of
      a conflict with some other event), then the counter goes into an
      'error' state, where reads return end-of-file (i.e. read() returns 0)
      until the counter is subsequently enabled or disabled.

      The 'exclusive' bit, if set, specifies that when this counter's group
      is on the CPU, it should be the only group using the CPU's counters.
      In future, this will allow sophisticated monitoring programs to supply
      extra configuration information via 'extra_config_len' to exploit
      advanced features of the CPU's Performance Monitor Unit (PMU) that are
      not otherwise accessible and that might disrupt other hardware
      counters.

      The 'exclude_user', 'exclude_kernel' and 'exclude_hv' bits provide a
      way to request that counting of events be restricted to times when the
      CPU is in user, kernel and/or hypervisor mode.

      Furthermore the 'exclude_host' and 'exclude_guest' bits provide a way
      to request counting of events restricted to guest and host contexts when
      using Linux as the hypervisor.

      The 'mmap' and 'munmap' bits allow recording of PROT_EXEC mmap/munmap
      operations, these can be used to relate userspace IP addresses to actual
      code, even after the mapping (or even the whole process) is gone,
      these events are recorded in the ring-buffer (see below).

      The 'comm' bit allows tracking of process comm data on process creation.
      This too is recorded in the ring-buffer (see below).

      The 'pid' parameter to the sys_perf_event_open() system call allows the
      counter to be specific to a task:

      pid == 0: if the pid parameter is zero, the counter is attached to the
      current task.

      pid > 0: the counter is attached to a specific task (if the current task
      has sufficient privilege to do so)

      pid < 0: all tasks are counted (per cpu counters)

      The 'cpu' parameter allows a counter to be made specific to a CPU:

      cpu >= 0: the counter is restricted to a specific CPU
      cpu == -1: the counter counts on all CPUs

      (Note: the combination of 'pid == -1' and 'cpu == -1' is not valid.)

      A 'pid > 0' and 'cpu == -1' counter is a per task counter that counts
      events of that task and 'follows' that task to whatever CPU the task
      gets schedule to. Per task counters can be created by any user, for
      their own tasks.

      A 'pid == -1' and 'cpu == x' counter is a per CPU counter that counts
      all events on CPU-x. Per CPU counters need CAP_PERFMON or CAP_SYS_ADMIN
      privilege.

      The 'flags' parameter is currently unused and must be zero.

      The 'group_fd' parameter allows counter "groups" to be set up. A
      counter group has one counter which is the group "leader". The leader
      is created first, with group_fd = -1 in the sys_perf_event_open call
      that creates it. The rest of the group members are created
      subsequently, with group_fd giving the fd of the group leader.
      (A single counter on its own is created with group_fd = -1 and is
      considered to be a group with only 1 member.)

      A counter group is scheduled onto the CPU as a unit, that is, it will
      only be put onto the CPU if all of the counters in the group can be
      put onto the CPU. This means that the values of the member counters
      can be meaningfully compared, added, divided (to get ratios), etc.,
      with each other, since they have counted events for the same set of
      executed instructions.

      Like stated, asynchronous events, like counter overflow or PROT_EXEC mmap
      tracking are logged into a ring-buffer. This ring-buffer is created and
      accessed through mmap().

      The mmap size should be 1+2^n pages, where the first page is a meta-data page
      (struct perf_event_mmap_page) that contains various bits of information such
      as where the ring-buffer head is.

      /*
       * Structure of the page that can be mapped via mmap
       */
      struct perf_event_mmap_page {
              __u32   version;                /* version number of this structure */
              __u32   compat_version;         /* lowest version this is compat with */
      
              /*
               * Bits needed to read the hw counters in user-space.
               *
               *   u32 seq;
               *   s64 count;
               *
               *   do {
               *     seq = pc->lock;
               *
               *     barrier()
               *     if (pc->index) {
               *       count = pmc_read(pc->index - 1);
               *       count += pc->offset;
               *     } else
               *       goto regular_read;
               *
               *     barrier();
               *   } while (pc->lock != seq);
               *
               * NOTE: for obvious reason this only works on self-monitoring
               *       processes.
               */
              __u32   lock;                   /* seqlock for synchronization */
              __u32   index;                  /* hardware counter identifier */
              __s64   offset;                 /* add to hardware counter value */
      
              /*
               * Control data for the mmap() data buffer.
               *
               * User-space reading this value should issue an rmb(), on SMP capable
               * platforms, after reading this value -- see perf_event_wakeup().
               */
              __u32   data_head;              /* head in the data section */
      };
      

      NOTE: the hw-counter userspace bits are arch specific and are currently only
      implemented on powerpc.

      The following 2^n pages are the ring-buffer which contains events of the form:

      #define PERF_RECORD_MISC_KERNEL          (1 << 0)
      #define PERF_RECORD_MISC_USER            (1 << 1)
      #define PERF_RECORD_MISC_OVERFLOW        (1 << 2)
      
      struct perf_event_header {
              __u32   type;
              __u16   misc;
              __u16   size;
      };
      
      enum perf_event_type {
      
              /*
               * The MMAP events record the PROT_EXEC mappings so that we can
               * correlate userspace IPs to code. They have the following structure:
               *
               * struct {
               *      struct perf_event_header        header;
               *
               *      u32                             pid, tid;
               *      u64                             addr;
               *      u64                             len;
               *      u64                             pgoff;
               *      char                            filename[];
               * };
               */
              PERF_RECORD_MMAP                 = 1,
              PERF_RECORD_MUNMAP               = 2,
      
              /*
               * struct {
               *      struct perf_event_header        header;
               *
               *      u32                             pid, tid;
               *      char                            comm[];
               * };
               */
              PERF_RECORD_COMM                 = 3,
      
              /*
               * When header.misc & PERF_RECORD_MISC_OVERFLOW the event_type field
               * will be PERF_RECORD_*
               *
               * struct {
               *      struct perf_event_header        header;
               *
               *      { u64                   ip;       } && PERF_RECORD_IP
               *      { u32                   pid, tid; } && PERF_RECORD_TID
               *      { u64                   time;     } && PERF_RECORD_TIME
               *      { u64                   addr;     } && PERF_RECORD_ADDR
               *
               *      { u64                   nr;
               *        { u64 event, val; }   cnt[nr];  } && PERF_RECORD_GROUP
               *
               *      { u16                   nr,
               *                              hv,
               *                              kernel,
               *                              user;
               *        u64                   ips[nr];  } && PERF_RECORD_CALLCHAIN
               * };
               */
      };
      

      NOTE: PERF_RECORD_CALLCHAIN is arch specific and currently only implemented
      on x86.

      Notification of new events is possible through poll()/select()/epoll() and
      fcntl() managing signals.

      Normally a notification is generated for every page filled, however one can
      additionally set perf_event_attr.wakeup_events to generate one every
      so many counter overflow events.

      Future work will include a splice() interface to the ring-buffer.

      Counters can be enabled and disabled in two ways: via ioctl and via
      prctl. When a counter is disabled, it doesn't count or generate
      events but does continue to exist and maintain its count value.

      An individual counter can be enabled with

      	ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);
      

      or disabled with

      	ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
      

      For a counter group, pass PERF_IOC_FLAG_GROUP as the third argument.
      Enabling or disabling the leader of a group enables or disables the
      whole group; that is, while the group leader is disabled, none of the
      counters in the group will count. Enabling or disabling a member of a
      group other than the leader only affects that counter - disabling an
      non-leader stops that counter from counting but doesn't affect any
      other counter.

      Additionally, non-inherited overflow counters can use

      	ioctl(fd, PERF_EVENT_IOC_REFRESH, nr);
      

      to enable a counter for 'nr' events, after which it gets disabled again.

      A process can enable or disable all the counter groups that are
      attached to it, using prctl:

      	prctl(PR_TASK_PERF_EVENTS_ENABLE);
      
      	prctl(PR_TASK_PERF_EVENTS_DISABLE);
      

      This applies to all counters on the current process, whether created
      by this process or by another, and doesn't affect any counters that
      this process has created on other processes. It only enables or
      disables the group leaders, not any other members in the groups.

      Arch requirements

      If your architecture does not have hardware performance metrics, you can
      still use the generic software counters based on hrtimers for sampling.

      So to start with, in order to add HAVE_PERF_EVENTS to your Kconfig, you
      will need at least this:

      • asm/perf_event.h - a basic stub will suffice at first
      • support for atomic64 types (and associated helper functions)

      If your architecture does have hardware capabilities, you can override the
      weak stub hw_perf_event_init() to register hardware counters.

      Architectures that have d-cache aliassing issues, such as Sparc and ARM,
      should select PERF_USE_VMALLOC in order to avoid these for perf mmap().

      posted @ 2024-01-28 19:20  dolinux  閱讀(257)  評論(0)    收藏  舉報
      主站蜘蛛池模板: 亚洲欧美人成人综合在线播放 | 精品亚洲国产成人av在线| 精品人妻av中文字幕乱| 四虎永久播放地址免费| 狠狠躁夜夜躁无码中文字幕| 国产av普通话对白国语| 久热综合在线亚洲精品| 99精品国产高清一区二区麻豆| 中文字幕结果国产精品| 国产精品中文第一字幕| 国产精品午夜福利免费看| 成人3D动漫一区二区三区| 88国产精品视频一区二区三区 | 国产欧美日韩亚洲一区二区三区| 国产老熟女一区二区三区| 四虎网址| 亚洲国产成人资源在线| 中文无码乱人伦中文视频在线| 91精品国产免费人成网站| 亚洲成AV人片在线观高清| 色爱综合另类图片av| 国产成人精品性色av麻豆| 激情一区二区三区成人文| 18av千部影片| 92国产精品午夜福利| 国产精品SM捆绑调教视频| 亚洲成av人片在www色猫咪| 国产成人欧美综合在线影院| 国产精品爱久久久久久久电影| 色吊丝av熟女中文字幕| 国产女人18毛片水真多1| 乱码中文字幕| 欧美精品国产综合久久| 免费观看一级欧美大| WWW丫丫国产成人精品| 久久成人伊人欧洲精品| 久热这里只有精品12| 精品无码成人片一区二区98 | 麻豆精品在线| 99久久婷婷国产综合精品青草漫画 | 久久精品久久电影免费理论片|