<output id="qn6qe"></output>

    1. <output id="qn6qe"><tt id="qn6qe"></tt></output>
    2. <strike id="qn6qe"></strike>

      亚洲 日本 欧洲 欧美 视频,日韩中文字幕有码av,一本一道av中文字幕无码,国产线播放免费人成视频播放,人妻少妇偷人无码视频,日夜啪啪一区二区三区,国产尤物精品自在拍视频首页,久热这里只有精品12

      Stay Hungry,Stay Foolish!

      Visualizing Traces

      Visualizing Traces

      https://www.compilenrun.com/docs/framework/fastapi/fastapi-middleware/fastapi-tracing-middleware/

      For production applications, you'll want to visualize traces. Here are some popular options:

      1. Jaeger: Open-source, end-to-end distributed tracing
      2. Zipkin: Another popular open-source tracing system
      3. Datadog APM: Commercial solution with extensive features
      4. New Relic: Commercial APM with distributed tracing support

      Most of these tools can be integrated with OpenTelemetry, providing a standardized way to collect and export traces.

      OpenTelemetry FastAPI monitoring

      https://uptrace.dev/guides/opentelemetry-fastapi

      What is OpenTelemetry?

      OpenTelemetry is an open source observability framework hosted by Cloud Native Computing Foundation. It is a merger of OpenCensus and OpenTracing projects.

      OpenTelemetry aims to provide a single standard across all types of observability signals such as OpenTemetry logs, distributed tracing, and metrics.

      OpenTelemetry specifies how to collect and send telemetry data to backend platforms. With OpenTelemetry, you can instrument your application once and then add or change vendors without changing the instrumentation.

      OpenTelemetry provides detailed instrumentation, enabling you to monitor and measure the performance of your FastAPI applications in real-time. You can identify bottlenecks, optimize code, and ensure your application runs smoothly even under heavy traffic.

       

       

      Observability Made Easy: Adding Logs, Traces & Metrics to FastAPI with Logfire

      https://dev.to/devgeetech/observability-made-easy-adding-logs-traces-metrics-to-fastapi-with-logfire-529l

      Picture this: You deploy your shiny new application. Everything looks great in dev, the logs are clean, requests are snappy, and life is good. Then… disaster strikes. A user reports a bug. Another complains about slow response times. You check your logs—wait, where are they? You SSH into the server, tail some logs, guess what went wrong, and hope for the best. Sound familiar?

      Observability—knowing what’s happening inside your app in real time—shouldn’t be this hard. But setting up an observability stack often feels like assembling IKEA furniture with missing instructions. That’s where Logfire comes in.

      Pydantic Logfire is a platform that makes it ridiculously easy to add observability to your application, no matter the size. In this post, I’ll show you how to integrate Logfire into a FastAPI app to get instant insights into logs, traces, and metrics—without the usual setup headaches. By the end, you’ll have real-time visibility into what’s happening under the hood, so you can debug, optimize, and sleep better at night.

      Let’s get started!

       

      https://pydantic.dev/logfire

       

      TOOLS

      https://github.com/wesdu/fastapi-opentracing

       

      https://github.com/acidjunk/starlette-opentracing

      OpenTracing support for Starlette and FastApi. Inspired by: Flask-OpenTracing OpenTracing implementations exist for major distributed tracing systems and can be bound or swapped with a one-line configuration change. This package uses the OpenTracing API for Python to implement it's functionality.

      The package will implement: Starlette middleware that can be used to add Opentracing support to all incoming requests. It also supports the usage of a customer root span by looking at extra headers for incoming request:

      Screenshot

       

      https://github.com/Blueswen/fastapi-observability

      FastAPI with Observability

      Observe FastAPI app with three pillars of observability: Traces (Tempo), Metrics (Prometheus), Logs (Loki) on Grafana through OpenTelemetry and OpenMetrics.

      Observe the FastAPI application with three pillars of observability on Grafana:

      1. Traces with Tempo and OpenTelemetry Python SDK
      2. Metrics with Prometheus and Prometheus Python Client
      3. Logs with Loki

      Observability Architecture

       

       

      https://github.com/fike/fastapi-blog

      https://github.com/fike/fastapi-blog/tree/main/deployments

      A FastAPI sample

      It's a FastAPI implementation as the backend for a blog system. This project's a funny goal to apply things that I'm learning. Things that you see here like telemetry using open source projects, CRUD using REST, and GraphQL (I hope that I have time to do that).

      version: "3.9"
      services:
        db-fapi-blog:
          environment:
           - POSTGRES_USER=fapi_blog
           - POSTGRES_PASSWORD=fapi_pass
           - POSTGRES_DB=fapi_blog
          image: postgres:13
          volumes:
            - db-data:/var/lib/postgresql/data
          networks:
            - dev
          ports:
            - 5432:5432
        backend:
          build:
            context: ../
            dockerfile: deployments/Dockerfile_backend_dev
            args:
              ENVIRONMENT: development
          volumes:
            - $PWD/backend:/opt/blog/backend
          depends_on:
            - db-fapi-blog
          environment:
            - ENVIRONMENT=development
            - OTELE_TRACE=True
            - SQLALCHEMY_DATABASE_URI=postgresql://fapi_blog:fapi_pass@db-fapi-blog:5432/fapi_blog
            - SECRET_KEY=c4af88af61391658010bd80e6fcb923f3fab38f53a4ece6d963a0c3c2d1e463b
            - ORIGINS=*
            - OTEL_EXPORTER_OTLP_INSECURE=False
          networks:
            - dev
          ports:
            - 8000:8000
          restart: always
        frontend:
          build:
            context: ../
            network: deployments_dev
            dockerfile: deployments/Dockerfile_frontend_dev
            args:
              ENVIRONMENT: development
          volumes:
            - $PWD/frontend:/opt/blog/frontend
          depends_on:
            - backend
          environment:
            - ENVIRONMENT=development
            - OTELE_TRACE=True
          networks:
            - dev
          ports:
            - 3000:3000
          restart: always
        jaeger-all-in-one:
          image: jaegertracing/all-in-one
          environment:
            - JAEGER_DISABLED=false
          networks:
            - dev
          ports:
            - 16686:16686
            - 6831:6831/udp
            - 14268
            - 14250
      
        # Zipkin
        zipkin-all-in-one:
          image: openzipkin/zipkin:latest
          networks:
            - dev
          ports:
            - "9411:9411"
        # Collector
        otel-collector:
          image: otel/opentelemetry-collector:latest
          command: ["--config=/etc/otel-collector-config.yaml", "${OTELCOL_ARGS}"]
          volumes:
            - ./otel-collector-config.yaml:/etc/otel-collector-config.yaml
          networks:
            - dev
          ports:
            - "1888:1888"   # pprof extension
            - "8888:8888"   # Prometheus metrics exposed by the collector
            - "8889:8889"   # Prometheus exporter metrics
            - "13133:13133" # health_check extension
            - "4317:4317"   # OTLP gRPC receiver
            # - "55679:55679" # zpages extension
            - "9411"   # Zipkin receiver
            - "55679" # zpages extension
          depends_on:
            - jaeger-all-in-one
            - zipkin-all-in-one
      
        prometheus:
          container_name: prometheus
          image: prom/prometheus:latest
          volumes:
            - ./prometheus.yaml:/etc/prometheus/prometheus.yml
          ports:
            - "9090:9090"
      
      networks:
        dev:
      
      volumes:
        db-data:

       

       

      https://jaeger-cn.readthedocs.io/zh-cn/latest/

      Jaeger, 分布式跟蹤系統(tǒng)

      歡迎訪(fǎng)問(wèn)Jaeger的文檔門(mén)戶(hù)!Jaeger新手和有經(jīng)驗(yàn)的老手都可以從下面獲取到想要的內(nèi)容

      如果沒(méi)有找到你想要的內(nèi)容,或者有個(gè)其他問(wèn)題,可以通過(guò)以下途徑聯(lián)系到我們 Github, Gitter chat, mailing list.

      關(guān)于?

      Jaeger受到了DapperOpenZipkin的啟發(fā),由Uber Technologies開(kāi)發(fā)并開(kāi)源的一個(gè)分布式跟蹤系統(tǒng)

      它可以用于監(jiān)控微服務(wù)體系結(jié)構(gòu):

      • 分布式上下文傳播
      • 分布式事務(wù)監(jiān)控
      • 根本原因分析
      • 服務(wù)依賴(lài)關(guān)系分析
      • 性能/延遲優(yōu)化

      通過(guò)這篇文章Evolving Distributed Tracing at Uber可以了解到Jaeger的歷史變遷和變化的原因

       

       

      https://github.com/softwarebloat/python-tracing-demo

      https://github.com/softwarebloat/python-tracing-demo/blob/main/docker-compose.yml

      services:
        grafana:
          image: grafana/grafana:8.2.0
          ports:
            - 5000:3000
          volumes:
            - ./config/grafana.ini:/etc/grafana/grafana.ini
            - ./config/grafana-datasources.yml:/etc/grafana/provisioning/datasources/datasources.yaml
          environment:
            - GF_AUTH_ANONYMOUS_ENABLED=true
            - GF_AUTH_ANONYMOUS_ORG_ROLE=Admin
            - GF_AUTH_DISABLE_LOGIN_FORM=true
          depends_on:
            - tempo
        loki:
          image: grafana/loki:2.3.0
          ports:
            - 3100:3100
          command: -config.file=/etc/loki/local-config.yaml
        tempo:
          image: grafana/tempo:1.2.0
          command: [ "-search.enabled=true", "-config.file=/etc/tempo.yaml" ]
          volumes:
            - ./config/tempo.yaml:/etc/tempo.yaml
          ports:
            - 8000:8000 # tempo
        tracing-demo:
          build: .
          ports:
            - "8080:8080"
          logging:
            driver: loki
            options:
              loki-url: http://localhost:3100/loki/api/v1/push

       

      https://github.com/belajarqywok/fastapi-tensorflow-jaeger

      Deployment of NLP (Natural Language Processing) and Image Recognition models using FastAPI Framework (RPC / RESTful API), Tensorflow, and Jaeger OpenTelemetry (Distributed Tracing).

      Deployment of NLP (Natural Language Processing) and Image Recognition models using FastAPI Framework (RPC / RESTful API), Tensorflow, and Jaeger OpenTelemetry (Distributed Tracing).

      Topics

       

       

      https://github.com/dannielshalev/fastapi_alchemy_auditing_demo

      FastAPI SQLAlchemy Auditing Demo

      This repository demonstrates a FastAPI application integrated with SQLAlchemy for database operations and includes auditing functionality to store request and response details.

      Features

      • SQLAlchemy Integration: Utilizes SQLAlchemy for database operations, providing an efficient and scalable approach to interact with the database.

      • Middleware for Auditing: Implements FastAPI middleware to capture and store auditing information in the database for each incoming request.

      Project Structure

      The project is organized into the following modules and functions:

      Modules

      1. database.py: Manages the database connection and includes the SQLAlchemy logic for interacting with the database.

      2. modules.py: Defines the database schema, including an example Audit table for storing auditing information.

      Functions

      1. get_db: A FastAPI dependency that creates a new SQLAlchemy SessionLocal for each request and closes it once the request is completed.

      2. db_session_middleware: Middleware function executed for each request, capturing details both before and after the endpoint function is executed. It includes logic to store auditing information.

      3. store_audit: Function responsible for storing auditing information in the database.

       

       

       

       

      https://github.com/belajarqywok/fastapi-tensorflow-jaeger

      https://github.com/fanqingsong/fastapi-blog?tab=readme-ov-file

       

      posted @ 2025-08-24 23:01  lightsong  閱讀(7)  評(píng)論(0)    收藏  舉報(bào)
      千山鳥(niǎo)飛絕,萬(wàn)徑人蹤滅
      主站蜘蛛池模板: 国产美女久久久亚洲综合| 国产精品麻豆中文字幕| 久久精品国产午夜福利伦理| 国产伦码精品一区二区| 新野县| 久久天堂无码av网站| 亚洲精品日本久久一区二区三区| 婷婷六月天在线| 亚洲va久久久噜噜噜久久狠狠| 日韩加勒比一本无码精品| 干老熟女干老穴干老女人| AV最新高清无码专区| 青青草国产自产一区二区| 国产69精品久久久久99尤物| 国产一区二区日韩在线| 18禁亚洲一区二区三区| 内射毛片内射国产夫妻| 亚洲精品成人综合色在线| 两性午夜刺激性视频| 无码专区视频精品老司机| 亚洲成精品动漫久久精久| 亚洲一级片一区二区三区| 中文字幕免费一二三区乱码| 日韩精品国产另类专区| 日韩激情一区二区三区| 日韩有码国产精品一区| 精品国产迷系列在线观看| 国产成人精品无码播放| 久久狠狠高潮亚洲精品夜色| 天天躁日日躁狠狠躁av麻豆男男| 亚洲国产日韩a在线播放| 小雪被老外黑人撑破了视频| 免费无码一区无码东京热| 长腿校花无力呻吟娇喘| 越南女子杂交内射bbwxz| 亚洲中文字幕亚洲中文精| 东京热人妻无码一区二区AV | 日韩不卡在线观看视频不卡| 少妇宾馆粉嫩10p| 亚洲成人免费一级av| 亚洲国产成人久久综合三区|