已知\(x^2+2y^2-\sqrt{3}xy=1(x,y\in\mathbf{R}),\)則\(x^2+y^2\)的最小值為_________\(.\)
解答:
法一:設\(x^2+y^2=t,\)則\(x^2+y^2=t(x^2+2y^2-\sqrt{3}xy)\).
\((1-t)x^2+\sqrt{3}txy+y^2-2ty=0,\)
\(\Delta =3t^2y^2-4(1-t)(y^2-2ty^2)\geq 0,\)即得\(t\in [\dfrac{2}{5},2].\)
故\((x^2+y^2)_\min=\dfrac{2}{5}.\)
評注:這個方法將\(x\)看作主元,構造一元二次方程利用根的存在性求出\(x^2+y^2\)的取值范圍.
法二:三角代換\(,\)配方可得\((x-\dfrac{\sqrt{3}}{2}y)^2+\dfrac{5}{4}y^2=1,\)
設\(x-\dfrac{\sqrt{3}}{2}y=\cos{\theta},\dfrac{\sqrt{5}}{2}y=\sin{\theta}\)
浙公網安備 33010602011771號