<output id="qn6qe"></output>

    1. <output id="qn6qe"><tt id="qn6qe"></tt></output>
    2. <strike id="qn6qe"></strike>

      亚洲 日本 欧洲 欧美 视频,日韩中文字幕有码av,一本一道av中文字幕无码,国产线播放免费人成视频播放,人妻少妇偷人无码视频,日夜啪啪一区二区三区,国产尤物精品自在拍视频首页,久热这里只有精品12

      use a script run by gromacs to analysis protein protein complex dynamic

      using gromacs to write a script for protein-protein complex moleculer dynamics from force field selection to trajectory analyze step by step,and give annotation to each line

      GROMACS is a powerful molecular dynamics software package used for simulating complex biomolecular systems. Below is a step-by-step example of preparing and running a protein-protein complex simulation using GROMACS, as well as analyzing the trajectory. Please note that this is just a basic example and may need to be adjusted for your specific system or requirements. Throughout the script, I have provided annotations using comments (lines beginning with #).

      First, you should have installed GROMACS on your system. You should also have the following files ready:

      • Protein-protein complex structure file (e.g., complex.pdb)
      • Force field files (e.g., using the CHARMM36 force field)

      Ensure that you have the GROMACS executable directory in your PATH. Now you can create a script, for example, run_gromacs.sh:

       

      #!/bin/bash
      # run_gromacs.sh
      
      # Step 1: Create topology files using the selected force field (e.g., CHARMM36)
      # -f: Input structure (PDB) file
      # -o: Output GROMACS structure (GRO) file
      # -p: Output topology (TOP) file
      # -i: Output include topology (ITP) file
      # -water: Water model (e.g., tip3p)
      gmx pdb2gmx -f complex.pdb -o complex.gro -p topol.top -i posre.itp -ff charmm36-mar2019 -water tip3p
      
      # Step 2: Define simulation box
      # -cp: Input coordinate file
      # -cs: Solvent coordinate file
      # -o: Output solvated structure file
      # -box: Box dimensions (e.g., 5x5x5 nm)
      gmx editconf -f complex.gro -o complex_box.gro -c -d 1.0 -bt cubic
      
      # Step 3: Solvate the system with water
      # -cp: Input solute coordinate file
      # -cs: Solvent coordinate file
      # -o: Output solvated structure file
      # -p: Topology file
      gmx solvate -cp complex_box.gro -cs spc216.gro -o complex_solv.gro -p topol.top
      
      # Step 4: Create an index file to specify the groups for energy minimization
      # -f: Input structure file
      # -o: Output index file
      echo -e "q\n" | gmx make_ndx -f complex_solv.gro -o index.ndx
      
      # Step 5: Perform energy minimization
      # -f: Input molecular dynamics parameter (mdp) file
      # -c: Input structure file
      # -r: Input reference structure file
      # -n: Input index file
      # -p: Input topology file
      # -o: Output trajectory file
      # -e: Output energy file
      # -g: Output log file
      # -t: Input trajectory file to continue from
      # -init_t: Initial time for input trajectory
      gmx grompp -f em.mdp -c complex_solv.gro -r complex_solv.gro -n index.ndx -p topol.top -o em.tpr
      gmx mdrun -v -deffnm em
      
      # Step 6: Equilibrate the system (NVT and NPT)
      # NVT equilibration
      gmx grompp -f nvt.mdp -c em.gro -r em.gro -n index.ndx -p topol.top -o nvt.tpr
      gmx mdrun -v -deffnm nvt
      
      # NPT equilibration
      gmx grompp -f npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt -n index.ndx -p topol.top -o npt.tpr
      gmx mdrun -v -deffnm npt
      
      # Step 7: Run the production MD simulation
      gmx grompp -f md.mdp -c npt.gro -t npt.cpt -n index.ndx -p topol.top -o md.tpr
      gmx mdrun -v -deffnm md
      
      # Step 8: Analyze the trajectory
      # -f: Input trajectory file
      # -s: Input run input file
      # -o: Output property file
      # -xvg: xvg plot output format (e.g., xmgrace)
      gmx rms -s md.tpr -f md.xtc -o rmsd.xvg -xvg none
      gmx gyrate -s md.tpr -f md.xtc -o rg.xvg -xvg none
      gmx hbond -s md.tpr -f md.xtc -num hbnum.xvg -xvgnone
      gmx mindist -s md.tpr -f md.xtc -o mindist.xvg -xvg none
      
      # Further analysis can be performed as needed for your specific system and research question
      

       

      Before running the script, you should create or obtain the necessary molecular dynamics parameter (mdp) files for energy minimization (em.mdp), NVT equilibration (nvt.mdp), NPT equilibration (npt.mdp), and the production MD simulation (md.mdp). You can find example mdp files in the GROMACS documentation or online.

      To run the script, open a terminal, navigate to the directory containing your input files, and execute:

      bash
      chmod +x run_gromacs.sh
      ./run_gromacs.sh
      

      This script will run a basic molecular dynamics simulation for a protein-protein complex using GROMACS. Remember that you may need to adjust parameters, force field, water model, or analysis options to suit your specific system and research goals.

       

      posted @ 2023-04-25 09:40  kehan  閱讀(269)  評論(0)    收藏  舉報
      主站蜘蛛池模板: 碌曲县| 中文无码热在线视频| 日韩美女亚洲性一区二区| 又色又污又爽又黄的网站| 国产成人精品一区二区三区免费| 成年在线观看免费人视频| 国产精品日韩专区第一页| 中文字幕人妻无码一区二区三区| 亚洲午夜激情久久加勒比| 新巴尔虎右旗| 福利一区二区在线播放| 久久99精品久久久久久青青| av资源在线看免费观看| 丰满少妇在线观看网站| 文中字幕一区二区三区视频播放| 国产蜜臀视频一区二区三区| 福利一区二区1000| 丁香婷婷色综合激情五月| 国产日本一区二区三区久久| 99久久精品久久久久久婷婷| 成人精品区| 那坡县| 蜜臀av一区二区三区在线| 亚洲日本精品一区二区| 久久综合久中文字幕青草| 午夜福利片1000无码免费| 成人一区二区三区在线午夜| 国产日韩精品秘 入口| 人妻少妇偷人精品一区| 国产乱老熟女乱老熟女视频| 一本色道久久东京热| 欧美日韩精品一区二区三区不卡 | 亚洲国模精品一区二区| 日韩a∨精品日韩在线观看| 亚洲2017天堂色无码| 国产乱码1卡二卡3卡四卡5| 日韩淫片毛片视频免费看| 成人国产一区二区三区精品| 午夜综合网| 国产成人精品18| 一本精品99久久精品77|