【筆記】學術英語寫作
小學期修了學術英語寫作,老師是我們數分三的老師(啊這)。以下是課堂筆記匯總
analogy 類比
constitute 組成
attenuate 減少
convention 公約
referee 審閱
sanity check
Overview
-
完整。把數學符號翻譯成英文后,行文應當符合英文語法。
-
簡潔。Don't show.
-
邏輯。Motivation。
-
向大師學習。
Definition
-
本質: if and only if.(或者只寫 if)
-
what is what. 可能的陳述方式:把滿足 x 的 y 叫做 z。
下面給出例子。
例子 1:(數學分析)
定義:設 \(B \sub \R^2\)。如果對任意給定的 \(\epsilon > 0\) 存在可數個閉矩形序列 \(\{I_i\}\)(\(i=1,2,\cdots\))使得 \(B\sub \cup_{i=1}^{\infty} I_i\),\(\sum_{i=1}^{\infty} \sigma(I_i) <\epsilon\),則稱 \(B\) 為(二維)零測集。
Definition: Let \(B \sub \R^2\). Assume that for any \(\epsilon >0\), there exists a countable sequence \(\{I_i\}_{i=1,2,\cdots}\) of closed rectangles, such that \(B\sub \cup_{i=1}^{\infty} I_i,\sum_{i=1}^{\infty} \sigma(I_i) <\epsilon\). Then \(B\) is said to be a (2-dimensional) null set.(Here \(\sigma\) denotes ...)
Comment:用 Assume that 祈使句替代 If 從句。善用逗號。引入了新的記號必須在附近進行解釋。
例子 2:(數學分析)
Definition: Let \(\Omega \sub \R^3\) be a domain and \(P_0 \in \Omega\). We say that \(\Omega\) is star-shaped with respect to \(P_0\) if the segment \(\overline{PP_0}\) lies in \(\Omega\) for any \(P\in \Omega\).
例子 3:(表示論)
Let \(G\) be a group. Let \(V\) be a vector space. A representation of \(G\) on \(V\) is a linear action of \(G\) on \(V\). That is, for each \(g\in G\), there is a linear transform \(\rho(g):V\to V\) such that \(\rho(g_1g_2)=\rho(g_1)\rho(g_2)\) for any \(g_1,g_2\in G\).
Comment:也就是說可以用 "That is," 或者 "i.e.," 表示。transformation (US) transform (UK)。重要的公式可以居中。非必要不寫記號,如 \(\forall\) 和 for all。
例子 4:(隨機過程)
Let \(\xi = (\xi_1,\cdots,\xi_d)^T\) be a \(d\)-dimensional random vector such that
Here, \(\eta_1,\cdots,\eta_m\) are i.i.d. Gaussians, and \((a_{ij})_{1 \le i \le d\\1 \le j \le m}\); \((\mu_i)_{1\le i \le d}\) are constants. Then \(\xi\) is said to obey \(d\)-dimensional Gaussian distribution.
Notation. \(\xi = A\eta + \mu\) for \(A=(a_{ij}),\mu = (\mu_i)\) in the matrix form.
Comment:當其他內容太多時,把要定義的東西提前。可以使用領域公認的縮寫(如本例中 Independent and identically distributed 縮寫成 i.i.d.)。
例子 5:(數學分析)
Def: Let \(f:X\to Y\) be a mapping between metric spaces. Let \(x_0 \in X\). Say that \(f\) is continuous at \(x_0\) if for any \(\epsilon > 0\), there is \(\delta > 0\) such that \(f(\mathbb{B}_\delta^X(x_0)) \sub \mathbb{B}_{\epsilon}^{Y}(f(x_0))\).
Comment:避免用數學符號作為一句話的開頭。不要引入不必要的記號。
Theorem
- 完整準確羅列條件和限制。
- 最核心的結論盡量在突出位置一句話凸顯。
- 上下文安排。 *必要時可以分割成若干引理。
例子 1:Let \(f:[-\pi,\pi] \to \R\) be a continuous function such that \(f(\pi) = f(-\pi)\). Suppose that \(f\) is piecewise differentiable on \([-\pi,\pi]\), and that \(f'\) is Riemann-integrable. Then the Fourier series of \(f\) on \([-\pi,\pi]\) converges uniformly to \(f(x)\). In fact,
Comment:公式后記得打標點符號。Punctuate the maths formulae!
例子 2:
Thm: Let \(U\sub \R^n\) be open, let \(f:U \to \R\) be of class \(C^2\) and let \(x^0\) be a stationary point of \(f\). Then the following holds:
- if ..., then ... ;
- if ..., then ... ; and
- if ..., then ... .
Comment:冒號和分號后小寫,列舉最后兩項間的 and.
Proof of Theorem
有一些固定證明思路:Contradiction, induction, cases...
例子 1:(反證)
命題:設 \(A\) 為 \(\R^n\) 中子集,則以下等價。
- \(A\) 為緊致集;
- \(A\) 為序列緊致集。
- \(A\) 為有界閉集。
Proof (1) to (2)
Assume that there were a sequence \(\{b_n\} \sub A\), such that any of its subsequence does not converge in \(A\). By ...., there is an open ball \(\mathbb{B}_{r(a)}(a)\) for any \(a \in A\) which contains at most finitely many terms of \(\{b_n\}\). By compactness of \(A\) (note that \(A \sub \cup B_{{r(a)}}(a)\)), one can find \(a_1,\cdots,a_k\) such that \(A \sub \cup_{i=1}^k B_{r(a_i)}(a_i)\). In particular, only finitely many \(b_n\) are in \(A\).
Contradiction. (/which contradicts ...)
Comment: Contradiction 中可以使用虛擬語氣(Europe)。用以下來代替 according to:By/ in view of/ by virtue of/ thanks to。可以用括號表示原因。特別地使用 in particular。
歸納法:
We induct on \(k\)/We proceed with induction on \(k\).
The base step/case \(k=0\) has been covered by Lemma A.
Now assume the assertion for \(k-1\) and argue for \(k\).
....
Hence, the proof is complete by induction.
designate
predicate
preliminary
cornerstone
manuscript
compromise 損害
usher
typographical
painstakingly
以下是……
- The following result is a Tauberian theorem.
- Let us introduce the Tauberian theorem as follow.
- Below is a Tauberian theorem.
Theorem (Hardy [5, Chapter 7])
Denote the partial sum of \(\sum f_n(x)\) as/by \(S_n(x)\). / Denote by \(S_n(x)\) the partial sum of \(\sum f_n(x)\). Let \(\sigma_n=\cdots\). If \(\sigma_n(x)\) converges uniformly to \(f(x)\) and if \(\{nf_n(x)\}\) is uniformly bounded, the \(\sum f_n(x)\) converges uniformly to \(f\).
Comment: 可以 Denote sth by 記號. 或者 Denote by 記號 sth。多個條件時可以把后面的條件 if 顯式寫出。
Proof. By assumption (the uniform boundness of \(\{nf_n(x)\}\)), there is \(M>0\) such that \(|nf_n(x)| < M\) for every \(x\) and \(n\). Given any \(0<\epsilon<1\), one can find \(N_0\) such that \(\cdots\) for every \(x\) and \(n > N_0\).
Also/ in addition/ moreoever/ further more/ on the other hand, since \(\cdots\), we obtain that/ one sees that/ it holds that \(\cdots\).
Hence/ Thus, ...
Take/Set/Pick \(N > \cdots\), then ...
This yields/leads to ...
Comment: on the other hand 表遞進。表最終結果用 therefore。
Introduction
The main contribution of this paper is to obtain/establish/derive the \(W^{1,p}\) estimate under weaker assumptions; in particular, we assume that \(A^{-1}(x)\) has small BMO norm. (解釋 weaker 這種不精確的詞語) More precisely, ...
不用 Obviously。It is clear that.
引用/參照
-
(see [14])
-
(cf [14])
-
[14]
-
See [14].
-
See [2,3,5] and the many references cited therein.
-
See [1] by Bourgain-Kenig-Tao.
[編號] 作者名(首字母排序)文章標題,雜志名縮寫(斜體)卷號(加粗)年份(括號中),頁碼(或者文章號).
常用短語
sufficiently large
well justified
easy/simple/straightforward
readily
deriavtive
(改變運算優先級的)括號 parenthesis
代入 substitute sth into sth
neglect/ignore the lower order terms
dominate/majerise
as mentioned above / as aforementioned
verbatim
strictly/roughly speaking
For simplicity/ease of notations.
推廣 generalize/extend
斷言 claim/assert/assertion
answer the question in the affirmative/negative.
說明 illustrate/elaborate
To sum up/conclude.
clutch
seduce
assume 顯露(特征)
succinctly
fourscore
dictum
crude
rigor
from scratch
culminate
a priori/ a posteriori 先驗后驗
compelling
\(\heartsuit \spadesuit \clubsuit \diamondsuit\)
\(\varpi\)
在 Introduction 結尾,描述該文結構
-
The plan of the paper is as follows.
-
The rest of the paper is organised as follows.
defer
公務郵件
Title:Siran Li request for recommendation letter
Sent to: Prof Tao
cc'ed Hua Li (抄送自己一份留底)
Dear Prof. Tao,
? My name is Hua Li. I took your course "Mathematical Analysis" in Fall Semester 2022-23. This was my first course on analysis, and I enjoyed it immersely. I got 98/100 in the final exam and ranked the first in your class. (最近沒有頻繁聯系需要介紹自己與收信人關系)
? I am now applying for graduate school/Ph D programmes in both China and the US (寫明地點,因為各地推薦信內容不一). I am writing to ask if you would like to write a recommendation letter on my behalf/ in support of my application.
? I am applyig for 12 schools this time (PKU, SJTU, FDU, SUST, Havard, Princeton, Yale, NYU(master), xx, ....). The deadline for the letter is 5th July, 2024. (給足信息)
? Many thanks for your time and your consideration! If there is any more information I should provide, please do not hesitate to contact me at any time.
? Yours Cordially/Sincererly/With Best Regards,
Hua Li
尊敬的陶教授:
? 您好。我是上海交大數學大二學生李華,正在參考您的教材《數學分析》進行學習。關于第三章定理三(如下)
。。。。
我有一處不明向您請教:為何 \(K\) 必須為緊?
? 盼您百忙之中撥冗回復。非常感激!
祝好,
? 李華
寫證明:
- 善用 Claim。
- data-ink ratio
\(\chi\)
善用 newcommand。
\newcommand\e\epsilon
\allowdisplaybreaks[4]
\newtheorem*{theorem*}{Theorem} % 不參與編號
\bibliography{bib file}
\cite[p. 133]{xxx, yyy, zzz}
\nonumber\\
\tag{$\clubsuit$}
\(\newcommand\e\epsilon\)
\(\e\)
~ 連接號
\(\Bigg( \Huge( \bigg( \Big( \big(^\top\)
\textsc small caps
word:12號字 兩倍行距
空格
\qquad \quad \, \.
\(a\qquad b\)
\(a\quad b\)
\(a\,b\)
\(a\.b\)
\(\P \S \dagger \ddagger \copyright \AA \O \ss \pounds \i \j\)
\(u_{\text{NS}}^3\)
這樣的 \(\ell\) 以避免混淆 \(l1\).
\(\| a\|\)
\(\wp\)
\(\surd\)
\(\top\bot \vdash \dashv\)
\(\bigsqcup \odot \biguplus\)
\(\setminus\) 和 \(\backslash\)
\(\ll\)
\(\sqsubseteq\)
\(\lesssim \simeq \approx \cong \bowtie \asymp\)
\(\mbox{hhhh}\)
\begin{eqnarray*}
\(a\hspace{300pt}3\)
\(\vspace{20mm}\)

浙公網安備 33010602011771號