20250915
T1
ZZH 的游戲
二分答案之后,兩個點輪流跳到當前能跳到的最小點。如果沒法跳了且不都在 \(1\),那么無解。容易發(fā)現(xiàn)這是對的,可以通過建重構樹維護。然后發(fā)現(xiàn)二分答案不是必要的,只需要每次沒法跳的時候手動開大答案即可。復雜度瓶頸在建重構樹的并查集。
代碼
#include <iostream>
#include <string.h>
#include <vector>
using namespace std;
#define getchar() p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++
char buf[1<<21], *p1, *p2, ch;
long long read() {
long long ret = 0, neg = 0; char c = getchar(); neg = (c == '-');
while (c < '0' || c > '9') c = getchar(), neg |= (c == '-');
while (c >= '0' && c <= '9') ret = ret * 10 + c - '0', c = getchar();
return ret * (neg ? -1 : 1);
}
int n, s, t;
vector<int> G1[1000005], G2[1000005];
int f1[1000005], f2[1000005];
int mn1[1000005], mn2[1000005];
int dsu[1000005];
int getf(int x) { return (dsu[x] == x ? x : (dsu[x] = getf(dsu[x]))); }
int main() {
freopen("game.in", "r", stdin);
freopen("game.out", "w", stdout);
int tc = read();
while (tc--) {
for (int i = 1; i <= n; i++) G1[i].clear(), G2[i].clear();
n = read();
for (int i = 1; i < n; i++) {
int u = read(), v = read();
G1[u].emplace_back(v);
G1[v].emplace_back(u);
}
for (int i = 1; i < n; i++) {
int u = read(), v = read();
G2[u].emplace_back(v);
G2[v].emplace_back(u);
}
for (int i = 1; i <= n; i++) {
dsu[i] = mn1[i] = i;
for (auto v : G1[i]) {
if (v < i) {
int y = getf(v);
dsu[y] = f1[y] = i, mn1[i] = min(mn1[i], mn1[y]);
}
}
}
for (int i = 1; i <= n; i++) {
dsu[i] = mn2[i] = i;
for (auto v : G2[i]) {
if (v < i) {
int y = getf(v);
dsu[y] = f2[y] = i, mn2[i] = min(mn2[i], mn2[y]);
}
}
}
cin >> s >> t;
int ans = s + t;
while (mn1[s] != 1 || mn2[t] != 1) {
while ((mn2[t] == 1 || mn1[s] + f2[t] > ans) && (mn1[s] == 1 || f1[s] + mn2[t] > ans)) ++ans;
while (1) {
bool c = 0;
while (mn1[s] != 1 && f1[s] + mn2[t] <= ans) s = f1[s], c = 1;
while (mn2[t] != 1 && mn1[s] + f2[t] <= ans) t = f2[t], c = 1;
if (!c) break;
}
}
cout << ans << "\n";
}
return 0;
}
T2
環(huán)
\(2p > n\) 的質數(shù)沒用,扔掉。接下來構造用到剩下所有東西的方案。
把所有東西按照最小質因子分組。對于 \(12 \le 4p \le n\) 的質數(shù),通過 \(2p - p - \cdots - 4p\) 將它接進 \(2\) 里面。對于 \(3p \le n, 4p > n\) 的質數(shù),通過 \(2p_1 - 3p_1 - 3p_2 - 2p_2\) 把它們這樣接進來。由于指不定有奇數(shù)還是偶數(shù)個,最后結尾可能是 \(2\) 也可能是 \(3\)。只需要在后面接 \(6\) 并順帶把 \(3\) 那一組放進來即可。對于 \(n < 12\) 的情況容易特判。
代碼
#include <iostream>
#include <string.h>
#include <vector>
using namespace std;
int n, X, Y;
vector<int> vec[500005], ans;
vector<int> V;
bool vis[500005], ip[500005], mark[500005];
int main() {
freopen("cycle.in", "r", stdin);
freopen("cycle.out", "w", stdout);
int tc;
cin >> tc;
while (tc--) {
cin >> n;
if (n >= 12) {
ans.clear(); V.clear();
for (int i = 2; i <= n; i++) vec[i].clear(), vis[i] = 0, mark[i] = 0;
for (int i = 2; i <= n; i++) {
if (mark[i]) continue;
ip[i] = 1;
if (i * 3 <= n && i * 4 > n) V.emplace_back(i);
for (int j = i; j <= n; j += i) if (!mark[j]) vec[i].emplace_back(j), mark[j] = 1;
}
auto ins = [&](int x) {
ans.emplace_back(x * 2);
for (auto v : vec[x]) if (!vis[v]) ans.emplace_back(v);
ans.emplace_back(x * 4);
};
if (V.size() & 1) V.emplace_back(-1);
// 2X - 3X - 3Y - 2Y
for (int i = 0; i < (int)V.size(); i += 2) {
X = V[i], Y = V[i + 1];
ans.emplace_back(2 * X), ans.emplace_back(X), ans.emplace_back(3 * X);
if (Y != -1) ans.emplace_back(3 * Y), ans.emplace_back(Y), ans.emplace_back(2 * Y);
}
for (auto v : ans) vis[v] = 1;
for (int i = 3; i <= n; i++) if (ip[i] && i * 4 <= n) ins(i);
for (auto v : ans) vis[v] = 1;
for (int i = 2; i <= n; i += 2) if (!vis[i]) ans.emplace_back(i);
cout << ans.size() << "\n";
for (auto v : ans) cout << v << " ";
} else for (int i = (cout << n / 2 << "\n", 2); i <= n; i += 2) cout << i << " ";
cout <<" \n";
}
return 0;
}
T3
道路的眼淚
路徑 \(\min\),想到重構樹。從大往小加點建出,則每個點的 \(V\) 集合即為其所有祖先。
第一問:枚舉 LCA 容易計算答案。
第二問:樹形 dp 即可。
第三問:由于異或的優(yōu)秀性質,對于 \(\bigoplus V\) 中的每個點 \(x\),可以把 \(S\) 集合 \(\oplus \{ x, f_x \}\),其中 \(f_x\) 為 \(x\) 在重構樹的祖先(沒有就算了),從而得到對應的 \(S\)。那么這樣我們就構造了 \(S\) 和 \(V\) 的雙射。那么就做完了。
代碼
#include <iostream>
#include <string.h>
#include <vector>
#define int long long
using namespace std;
#define getchar() p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++
char buf[1<<21], *p1, *p2, ch;
long long read() {
long long ret = 0, neg = 0; char c = getchar(); neg = (c == '-');
while (c < '0' || c > '9') c = getchar(), neg |= (c == '-');
while (c >= '0' && c <= '9') ret = ret * 10 + c - '0', c = getchar();
return ret * (neg ? -1 : 1);
}
const int P = 998244353;
int n, m, K, ans;
int pw[2000005];
int h1[2000005], n1[4000005], t1[4000005], e1;
int h2[2000005], n2[2000005], t2[2000005], e2;
void add1(int u, int v) { t1[++e1] = v, n1[e1] = h1[u], h1[u] = e1; }
void add2(int u, int v) { t2[++e2] = v, n2[e2] = h2[u], h2[u] = e2; }
int qpow(int x, int y = P - 2) {
int ret = 1;
while (y) {
if (y & 1)
ret = ret * x % P;
y >>= 1;
x = x * x % P;
}
return ret;
}
int fac[2000005], ifac[2000005], inv[2000005];
void Cpre(int n) {
fac[0] = fac[1] = ifac[0] = ifac[1] = inv[0] = inv[1] = 1;
for (int i = 2; i <= n; i++) {
fac[i] = fac[i - 1] * i % P;
inv[i] = (P - P / i) * inv[P % i] % P;
ifac[i] = ifac[i - 1] * inv[i] % P;
}
}
inline int C(int n, int m) { return (n < 0 || m < 0 || n < m) ? 0 : fac[n] * ifac[m] % P * ifac[n - m] % P; }
int str;
int sz[2000005];
void dfs1(int x, int d) {
sz[x] = 1;
int s = 0;
for (int i = h2[x]; i; i = n2[i]) {
int v = t2[i];
dfs1(v, d + 1);
sz[x] += sz[v];
s += P - pw[sz[v]] + 1;
}
s = (s + pw[sz[x]] - 1) % P;
ans += s * qpow(d, K) % P;
}
int dp[2000005];
void dfs2(int x) {
dp[x] = 1;
for (int i = h2[x]; i; i = n2[i]) {
int v = t2[i];
dfs2(v);
dp[x] = dp[x] * dp[v] % P;
}
dp[x] = ((dp[x] - 1) * 2 * K + K + 1) % P;
}
int dsu[2000005];
int getf(int x) { return (dsu[x] == x ? x : (dsu[x] = getf(dsu[x]))); }
signed main() {
Cpre(2000000);
freopen("tearroad.in", "r", stdin);
freopen("tearroad.out", "w", stdout);
str = read(), n = read(), m = read(), K = read();
pw[0] = 1;
for (int i = 1; i <= n; i++) pw[i] = pw[i - 1] * 2 % P, dsu[i] = i;
for (int i = 1; i <= m; i++) {
int u = read(), v = read();
add1(u, v);
add1(v, u);
}
for (int i = n; i; i--) {
for (int j = h1[i]; j; j = n1[j]) {
int v = t1[j];
if (v < i) continue;
if (getf(v) != getf(i)) add2(i, dsu[v]), dsu[dsu[v]] = i;
}
}
if (str / 100) {
dfs1(1, 1);
cout << ans % P << " ";
}
if ((str / 10) & 1) {
dfs2(1);
cout << dp[1] - 1 << " ";
}
if (str & 1) {
ans = 0;
for (int i = 1; i <= n; i++) ans += C(n, i) * ((i + K - 1) / K) % P;
cout << ans % P << "\n";
}
return 0;
}
T4
田野
離散化,之后的每個格點相當于一個矩形。顯然矩形只有四個角是重要的,對所有角跑最短路。
第一問,對于詢問點求出在哪個矩形,四個方向過來取 \(\min\) 即可。
第二問,相當于對每個矩形要求它每個時刻擴展了多少點。那么從四個角開始,分別考察每個角擴張的過程。對于某一個角,它一開始擴張的時候貢獻是 \(1\),之后每個時刻比前一個時刻的貢獻多 \(1\)。而之后它可能會撞到另外一個角,那么撞完了之后發(fā)現(xiàn)每個時刻比前一個時刻的貢獻增量就減少了 \(1\)。而之后它可能又要撞到另外一個角,那么撞完了之后每個時刻比前一個時刻的貢獻增量就又少了 \(1\)。而之后它可能就要撞到它對面的那個角了,那這么一撞就相當于強制停止這個角的貢獻了。于是我們只需要算出這個角分別什么時候撞到兩個鄰角,什么時候撞到對角,然后使用一些差分維護貢獻即可。當然這三個時間的相對順序也不是一定的,因此需要一些討論。由于范圍很大,需要將所有差分和詢問離線處理。
總復雜度 \(\mathcal{O}(n^2\log n + q\log n)\) 或 \(\mathcal{O}(n^2\log n + q\log (n^2 + q))\)。但也可能是類似的,反正就那樣。能過。
代碼
#include <iostream>
#include <algorithm>
#include <string.h>
#include <vector>
#include <queue>
#include <array>
#define int long long
using namespace std;
#define getchar() p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++
char buf[1<<21], *p1, *p2, ch;
long long read() {
long long ret = 0, neg = 0; char c = getchar(); neg = (c == '-');
while (c < '0' || c > '9') c = getchar(), neg |= (c == '-');
while (c >= '0' && c <= '9') ret = ret * 10 + c - '0', c = getchar();
return ret * (neg ? -1 : 1);
}
const int inf = 0x3f3f3f3f3f3f3f;
int n, tp, q;
int d_x[1005], dxcnt;
int d_y[1005], dycnt;
/*
01
23
*/
struct node { int x, y, t, dis; };
inline bool operator<(node x, node y) { return x.dis > y.dis; }
priority_queue<node> Q;
bool vis[1005][1005][4];
int dist[1005][1005][4];
int ban[1005][1005];
void _dijkstra() {
memset(dist, 63, sizeof dist);
int sx = lower_bound(d_x + 1, d_x + dxcnt + 1, 0) - d_x;
int sy = lower_bound(d_y + 1, d_y + dycnt + 1, 0) - d_y;
Q.push((node) { sx, sy, 0, dist[sx][sy][0] = 0 });
while (Q.size()) {
node tmp = Q.top(); Q.pop();
int x = tmp.x, y = tmp.y, t = tmp.t;
if (vis[x][y][t]) continue;
vis[x][y][t] = 1;
auto chkupd = [&](int tx, int ty, int tt, int ww) {
if (!ban[tx][ty] && dist[tx][ty][tt] > dist[x][y][t] + ww)
Q.push((node) { tx, ty, tt, dist[tx][ty][tt] = dist[x][y][t] + ww });
};
if (t == 0) {
if (x != 1) chkupd(x - 1, y, 1, 1);
if (y != dycnt - 1) chkupd(x, y + 1, 2, 1);
chkupd(x, y, 1, d_x[x + 1] - d_x[x] - 1);
chkupd(x, y, 2, d_y[y + 1] - d_y[y] - 1);
} else if (t == 1) {
if (x != dxcnt - 1) chkupd(x + 1, y, 0, 1);
if (y != dycnt - 1) chkupd(x, y + 1, 3, 1);
chkupd(x, y, 0, d_x[x + 1] - d_x[x] - 1);
chkupd(x, y, 3, d_y[y + 1] - d_y[y] - 1);
} else if (t == 2) {
if (x != 1) chkupd(x - 1, y, 3, 1);
if (y != 1) chkupd(x, y - 1, 0, 1);
chkupd(x, y, 3, d_x[x + 1] - d_x[x] - 1);
chkupd(x, y, 0, d_y[y + 1] - d_y[y] - 1);
} else {
if (x != dxcnt - 1) chkupd(x + 1, y, 2, 1);
if (y != 1) chkupd(x, y - 1, 1, 1);
chkupd(x, y, 2, d_x[x + 1] - d_x[x] - 1);
chkupd(x, y, 1, d_y[y + 1] - d_y[y] - 1);
}
}
}
struct Node { int op, s, d, x; };
vector<Node> vec;
int ans[200005];
inline int calc(int s, int d, int len) { int t = s + len * d; return (s * 2 + (len + 1) * d) * len / 2; }
void work() {
for (int i = 1; i < dxcnt; i++) {
for (int j = 1; j < dycnt; j++) {
if (ban[i][j]) continue;
int X = d_x[i + 1] - d_x[i], Y = d_y[j + 1] - d_y[j], t;
if (X == Y && Y == 1) vec.push_back({ 1, 1, 0, dist[i][j][0] }), vec.push_back({ -1, 1, 0, dist[i][j][0] + 1 });
else for (int k : { 0, 1, 2, 3 }) {
t = Y - 2 - abs(dist[i][j][k] - dist[i][j][k ^ 2]);
int t1 = (t >> 1) + (t & 1) * (k < (k ^ 2)) + max(dist[i][j][k], dist[i][j][k ^ 2]);
t = X - 2 - abs(dist[i][j][k] - dist[i][j][k ^ 1]);
int t2 = (t >> 1) + (t & 1) * (k < (k ^ 1)) + max(dist[i][j][k], dist[i][j][k ^ 1]);
t = X + Y - 3 - abs(dist[i][j][k] - dist[i][j][k ^ 3]);
int t3 = (t >> 1) + (t & 1) * (k < (k ^ 3)) + max(dist[i][j][k], dist[i][j][k ^ 3]);
if (t1 < dist[i][j][k] || t2 < dist[i][j][k]) continue;
(t1 > t2) ? swap(t1, t2) : void();
vec.push_back({ 1, 1, 1, dist[i][j][k] });
if (t3 < t1) {
vec.push_back({ -1, t3 + 2 - dist[i][j][k], -1, t3 + 1 });
continue;
}
vec.push_back({ -1, t1 + 2 - dist[i][j][k], -1, t1 + 1 });
vec.push_back({ 1, t1 + 1 - dist[i][j][k], 0, t1 + 1 });
if (t3 < t2) {
vec.push_back({ -1, t1 + 1 - dist[i][j][k], 0, t3 + 1 });
continue;
}
vec.push_back({ -1, t1 + 1 - dist[i][j][k], 0, t2 + 1 });
vec.push_back({ 1, t1 - dist[i][j][k], -1, t2 + 1 });
vec.push_back({ -1, max(0ll, t1 - dist[i][j][k] - (t3 - t2)), 1, min(t3 + 1, t2 + 1 + t1 - dist[i][j][k]) });
}
}
}
sort(vec.begin(), vec.end(), [](Node x, Node y) { return x.x == y.x ? (abs(x.op) > abs(y.op)) : (x.x < y.x); });
int dd = 0, al = 0, k = 0, lst = 0;
for (auto v : vec) {
dd += calc(al, k, v.x - lst); al += k * (v.x - lst); lst = v.x;
if (v.op == 0) ans[v.d] = dd;
else if (v.op == 1) al += v.s, k += v.d, dd += v.s;
else al -= v.s, k += v.d, dd -= v.s;
}
}
array<int, 4> rect[405];
signed main() {
freopen("field.in", "r", stdin);
freopen("field.out", "w", stdout);
n = read(), tp = read(), q = read();
for (int i = 1; i <= n; i++) {
int &x1 = rect[i][0], &x2 = rect[i][1], &y1 = rect[i][2], &y2 = rect[i][3];
x1 = read(), x2 = read(), y1 = read(), y2 = read();
d_x[++dxcnt] = x1, d_x[++dxcnt] = x2 + 1;
d_y[++dycnt] = y1, d_y[++dycnt] = y2 + 1;
}
d_x[++dxcnt] = 0, d_x[++dxcnt] = 1;
d_x[++dxcnt] = -inf, d_x[++dxcnt] = inf;
d_y[++dycnt] = 0, d_y[++dycnt] = 1;
d_y[++dycnt] = -inf, d_y[++dycnt] = inf;
sort(d_x + 1, d_x + dxcnt + 1); dxcnt = unique(d_x + 1, d_x + dxcnt + 1) - d_x - 1;
sort(d_y + 1, d_y + dycnt + 1); dycnt = unique(d_y + 1, d_y + dycnt + 1) - d_y - 1;
for (int i = 1; i <= n; i++) {
int x1, x2, y1, y2;
x1 = lower_bound(d_x + 1, d_x + dxcnt + 1, rect[i][0]) - d_x;
x2 = lower_bound(d_x + 1, d_x + dxcnt + 1, rect[i][1] + 1) - d_x;
y1 = lower_bound(d_y + 1, d_y + dycnt + 1, rect[i][2]) - d_y;
y2 = lower_bound(d_y + 1, d_y + dycnt + 1, rect[i][3] + 1) - d_y;
++ban[x1][y1], --ban[x2][y1], --ban[x1][y2], ++ban[x2][y2];
}
for (int i = 1; i <= dxcnt; i++) {
for (int j = 1; j <= dycnt; j++)
ban[i][j] += ban[i - 1][j] + ban[i][j - 1] - ban[i - 1][j - 1];
}
_dijkstra();
if (tp == 1) {
while (q--) {
int x = read(), y = read(), tx, ty, ans;
tx = upper_bound(d_x + 1, d_x + dxcnt + 1, x) - d_x - 1;
ty = upper_bound(d_y + 1, d_y + dycnt + 1, y) - d_y - 1;
ans = min({
dist[tx][ty][0] + x - d_x[tx] + d_y[ty + 1] - y - 1,
dist[tx][ty][1] + d_x[tx + 1] - x - 1 + d_y[ty + 1] - y - 1,
dist[tx][ty][2] + x - d_x[tx] + y - d_y[ty],
dist[tx][ty][3] + d_x[tx + 1] - x - 1 + y - d_y[ty]
});
cout << (ans >= inf ? -1 : ans) << "\n";
}
} else {
for (int i = 1; i <= q; i++) vec.push_back({ 0, 0, i, read() }); work();
for (int i = 1; i <= q; i++) cout << ans[i] << "\n";
}
return 0;
}
T1。
T3,構造雙射以計數(shù)。樹形 dp。
T4。對每個矩形分開考慮每個角獨立的貢獻。

浙公網(wǎng)安備 33010602011771號