<output id="qn6qe"></output>

    1. <output id="qn6qe"><tt id="qn6qe"></tt></output>
    2. <strike id="qn6qe"></strike>

      亚洲 日本 欧洲 欧美 视频,日韩中文字幕有码av,一本一道av中文字幕无码,国产线播放免费人成视频播放,人妻少妇偷人无码视频,日夜啪啪一区二区三区,国产尤物精品自在拍视频首页,久热这里只有精品12

      20221320馮泰瑞-實驗二密碼算法實現-4-6學時實踐過程記錄

      20221320馮泰瑞-實驗二密碼算法實現-4-6學時實踐過程記錄

      1.在Ubuntu或openEuler中(推薦openEuler)中調試運行教材提供的源代碼,至少運行SM2,SM3,SM4代碼,使用GmSSL命令驗證你代碼的正確性,使用Markdown記錄詳細記錄實踐過程,每完成一項功能或者一個函數gitcommit一次。(15分)

      SM2

      加密解密

      源代碼運行
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ tree
      .
      ├── kdf.c
      ├── kdf.h
      ├── Makefile
      ├── miracl.h
      ├── mirdef.h
      ├── SM2_ENC.c
      ├── SM2_ENC.h
      └── test.c
      
      1 directory, 8 files
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat kdf.h
      
      #include "SM2_ENC.h"
      #include <string.h>
      #define SM3_len 256
      #define SM3_T1 0x79CC4519
      #define SM3_T2 0x7A879D8A
      #define SM3_IVA 0x7380166f
      #define SM3_IVB 0x4914b2b9
      #define SM3_IVC 0x172442d7
      #define SM3_IVD 0xda8a0600
      #define SM3_IVE 0xa96f30bc
      #define SM3_IVF 0x163138aa
      #define SM3_IVG 0xe38dee4d
      #define SM3_IVH 0xb0fb0e4e
      /* Various logical functions */
      #define SM3_p1(x) (x^SM3_rotl32(x,15)^SM3_rotl32(x,23))
      #define SM3_p0(x) (x^SM3_rotl32(x,9)^SM3_rotl32(x,17))
      #define SM3_ff0(a,b,c) (a^b^c)
      #define SM3_ff1(a,b,c) ((a&b)|(a&c)|(b&c))
      #define SM3_gg0(e,f,g) (e^f^g)
      #define SM3_gg1(e,f,g) ((e&f)|((~e)&g))
      #define SM3_rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
      #define SM3_rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
      typedef struct {
      	unsigned long state[8];
      	unsigned long length;
      	unsigned long curlen;
      	unsigned char buf[64];
      } SM3_STATE;
      void BiToWj(unsigned long Bi[], unsigned long Wj[]);
      void WjToWj1(unsigned long Wj[], unsigned long Wj1[]);
      void CF(unsigned long Wj[], unsigned long Wj1[], unsigned long V[]);
      void BigEndian(unsigned char src[], unsigned int bytelen, unsigned char des[]);
      void SM3_init(SM3_STATE *md);
      void SM3_process(SM3_STATE * md, unsigned char buf[], int len);
      void SM3_done(SM3_STATE *md, unsigned char *hash);
      void SM3_compress(SM3_STATE * md);
      void SM3_256(unsigned char buf[], int len, unsigned char hash[]);
      void SM3_KDF(unsigned char *Z, unsigned short zlen, unsigned short klen, unsigned char *K);
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat kdf.c
      #include "kdf.h"
      /****************************************************************
      Function: BiToW
      Description: calculate W from Bi
      Calls:
      Called By: SM3_compress
      Input: Bi[16] //a block of a message
      Output: W[68]
      Return: null
      Others:
      ****************************************************************/
      void BiToW(unsigned long Bi[], unsigned long W[])
      {
      	int i;
      	unsigned long tmp;
      	for (i = 0; i <= 15; i++)
      	{
      		W[i] = Bi[i];
      	}
      	for (i = 16; i <= 67; i++)
      	{
      		tmp = W[i - 16]
      			^ W[i - 9]
      			^ SM3_rotl32(W[i - 3], 15);
      		W[i] = SM3_p1(tmp)
      			^ (SM3_rotl32(W[i - 13], 7))
      			^ W[i - 6];
      	}
      }
      /*****************************************************************
      Function: WToW1
      Description: calculate W1 from W
      Calls:
      Called By: SM3_compress
      Input: W[68]
      Output: W1[64]
      Return: null
      Others:
      *****************************************************************/
      void WToW1(unsigned long W[], unsigned long W1[])
      {
      	int i;
      	for (i = 0; i <= 63; i++)
      	{
      		W1[i] = W[i] ^ W[i + 4];
      	}
      }
      /******************************************************************
      Function: CF
      Description: calculate the CF compress function and update V
      Calls:
      Called By: SM3_compress
      Input: W[68]
      W1[64]
      V[8]
      Output: V[8]
      Return: null
      Others:
      ********************************************************************/
      void CF(unsigned long W[], unsigned long W1[], unsigned long V[])
      {
      	unsigned long SS1;
      	unsigned long SS2;
      	unsigned long TT1;
      	unsigned long TT2;
      	unsigned long A, B, C, D, E, F, G, H;
      	unsigned long T = SM3_T1;
      	unsigned long FF;
      	unsigned long GG;
      	int j;
      	//reg init,set ABCDEFGH=V0
      	A = V[0];
      	B = V[1];
      	C = V[2];
      	D = V[3];
      	E = V[4];
      	F = V[5];
      	G = V[6];
      	H = V[7];
      	for (j = 0; j <= 63; j++)
      	{
      		//SS1
      		if (j == 0)
      		{
      			T = SM3_T1;
      		}
      		else if (j == 16)
      		{
      			T = SM3_rotl32(SM3_T2, 16);
      		}
      		else
      		{
      			T = SM3_rotl32(T, 1);
      		}
      		SS1 = SM3_rotl32((SM3_rotl32(A, 12) + E + T), 7);
      		//SS2
      		SS2 = SS1 ^ SM3_rotl32(A, 12);
      		//TT1
      		if (j <= 15)
      		{
      			FF = SM3_ff0(A, B, C);
      		}
      		else
      		{
      			FF = SM3_ff1(A, B, C);
      		}
      		TT1 = FF + D + SS2 + *W1;
      		W1++;
      		//TT2
      		if (j <= 15)
      		{
      			GG = SM3_gg0(E, F, G);
      		}
      		else
      		{
      			GG = SM3_gg1(E, F, G);
      		}
      		TT2 = GG + H + SS1 + *W;
      		W++;
      		//D
      		D = C;
      		//C
      		C = SM3_rotl32(B, 9);
      		//B
      		B = A;
      		//A
      		A = TT1;
      		//H
      		H = G;
      		//G
      		G = SM3_rotl32(F, 19);
      		//F
      		F = E;
      		//E
      		E = SM3_p0(TT2);
      	}
      	//update V
      	V[0] = A ^ V[0];
      	V[1] = B ^ V[1];
      	V[2] = C ^ V[2];
      	V[3] = D ^ V[3];
      	V[4] = E ^ V[4];
      	V[5] = F ^ V[5];
      	V[6] = G ^ V[6];
      	V[7] = H ^ V[7];
      }
      /******************************************************************************
      Function: BigEndian
      Description: unsigned int endian converse.GM/T 0004-2012 requires to use big-endian.
      if CPU uses little-endian, BigEndian function is a necessary
      call to change the little-endian format into big-endian format.
      Calls:
      Called By: SM3_compress, SM3_done
      Input: src[bytelen]
      bytelen
      Output: des[bytelen]
      Return: null
      Others: src and des could implies the same address
      *******************************************************************************/
      void BigEndian(unsigned char src[], unsigned int bytelen, unsigned char des[])
      {
      	unsigned char tmp = 0;
      	unsigned long i = 0;
      	for (i = 0; i < bytelen / 4; i++)
      	{
      		tmp = des[4 * i];
      		des[4 * i] = src[4 * i + 3];
      		src[4 * i + 3] = tmp;
      		tmp = des[4 * i + 1];
      		des[4 * i + 1] = src[4 * i + 2];
      		des[4 * i + 2] = tmp;
      	}
      }
      /******************************************************************************
      Function: SM3_init
      Description: initiate SM3 state
      Calls:
      Called By: SM3_256
      Input: SM3_STATE *md
      Output: SM3_STATE *md
      Return: null
      Others:
      *******************************************************************************/
      void SM3_init(SM3_STATE *md)
      {
      	md->curlen = md->length = 0;
      	md->state[0] = SM3_IVA;
      	md->state[1] = SM3_IVB;
      	md->state[2] = SM3_IVC;
      	md->state[3] = SM3_IVD;
      	md->state[4] = SM3_IVE;
      	md->state[5] = SM3_IVF;
      	md->state[6] = SM3_IVG;
      	md->state[7] = SM3_IVH;
      }
      /******************************************************************************
      Function: SM3_compress
      Description: compress a single block of message
      Calls: BigEndian
      BiToW
      WToW1
      CF
      Called By: SM3_256
      Input: SM3_STATE *md
      Output: SM3_STATE *md
      Return: null
      Others:
      *******************************************************************************/
      void SM3_compress(SM3_STATE * md)
      {
      	unsigned long W[68];
      	unsigned long W1[64];
      	//if CPU uses little-endian, BigEndian function is a necessary call
      	BigEndian(md->buf, 64, md->buf);
      	BiToW((unsigned long *)md->buf, W);
      	WToW1(W, W1);
      	CF(W, W1, md->state);
      }
      /******************************************************************************
      Function: SM3_process
      Description: compress the first (len/64) blocks of message
      Calls: SM3_compress
      Called By: SM3_256
      Input: SM3_STATE *md
      unsigned char buf[len] //the input message
      int len //bytelen of message
      Output: SM3_STATE *md
      Return: null
      Others:
      *******************************************************************************/
      void SM3_process(SM3_STATE * md, unsigned char *buf, int len)
      {
      	while (len--)
      	{
      		/* copy byte */
      		md->buf[md->curlen] = *buf++;
      		md->curlen++;
      		/* is 64 bytes full? */
      		if (md->curlen == 64)
      		{
      			SM3_compress(md);
      			md->length += 512;
      			md->curlen = 0;
      		}
      	}
      }
      /******************************************************************************
      Function: SM3_done
      Description: compress the rest message that the SM3_process has left behind
      Calls: SM3_compress
      Called By: SM3_256
      Input: SM3_STATE *md
      Output: unsigned char *hash
      Return: null
      Others:
      *******************************************************************************/
      void SM3_done(SM3_STATE *md, unsigned char hash[])
      {
      	int i;
      	unsigned char tmp = 0;
      	/* increase the bit length of the message */
      	md->length += md->curlen << 3;
      	/* append the '1' bit */
      	md->buf[md->curlen] = 0x80;
      	md->curlen++;
      	/* if the length is currently above 56 bytes, appends zeros till
      	it reaches 64 bytes, compress the current block, creat a new
      	block by appending zeros and length,and then compress it
      	*/
      	if (md->curlen > 56)
      	{
      		for (; md->curlen < 64;)
      		{
      			md->buf[md->curlen] = 0;
      			md->curlen++;
      		}
      		SM3_compress(md);
      		md->curlen = 0;
      	}
      	/* if the length is less than 56 bytes, pad upto 56 bytes of zeroes */
      	for (; md->curlen < 56;)
      	{
      		md->buf[md->curlen] = 0;
      		md->curlen++;
      	}
      	/* since all messages are under 2^32 bits we mark the top bits zero */
      	for (i = 56; i < 60; i++)
      	{
      		md->buf[i] = 0;
      	}
      	/* append length */
      	md->buf[63] = md->length & 0xff;
      	md->buf[62] = (md->length >> 8) & 0xff;
      	md->buf[61] = (md->length >> 16) & 0xff;
      	md->buf[60] = (md->length >> 24) & 0xff;
      	SM3_compress(md);
      	/* copy output */
      	memcpy(hash, md->state, SM3_len / 8);
      	BigEndian(hash, SM3_len / 8, hash);//if CPU uses little-endian, BigEndian function is a necessary call
      }
      /******************************************************************************
      Function: SM3_256
      Description: calculate a hash value from a given message
      Calls: SM3_init
      SM3_process
      SM3_done
      Called By:
      Input: unsigned char buf[len] //the input message
      int len //bytelen of the message
      Output: unsigned char hash[32]
      Return: null
      Others:
      *******************************************************************************/
      void SM3_256(unsigned char buf[], int len, unsigned char hash[])
      {
      	SM3_STATE md;
      	SM3_init(&md);
      	SM3_process(&md, buf, len);
      	SM3_done(&md, hash);
      }
      /******************************************************************************
      Function: SM3_KDF
      Description: key derivation function
      Calls: SM3_init
      SM3_process
      SM3_done
      Called By:
      Input: unsigned char Z[zlen]
      unsigned short zlen //bytelen of Z
      unsigned short klen //bytelen of K
      Output: unsigned char K[klen] //shared secret key
      Return: null
      Others:
      *******************************************************************************/
      void SM3_KDF(unsigned char Z[], unsigned short zlen, unsigned short klen, unsigned char K[])
      {
      	unsigned short i, j, t;
      	unsigned int bitklen;
      	SM3_STATE md;
      	unsigned char Ha[SM2_NUMWORD];
      	unsigned char ct[4] = { 0,0,0,1 };
      	bitklen = klen * 8;
      	if (bitklen%SM2_NUMBITS)
      		t = bitklen / SM2_NUMBITS + 1;
      	else
      		t = bitklen / SM2_NUMBITS;
      	//s4: K=Ha1||Ha2||...
      	for (i = 1; i < t; i++)
      	{
      		//s2: Hai=Hv(Z||ct)
      		SM3_init(&md);
      		SM3_process(&md, Z, zlen);
      		SM3_process(&md, ct, 4);
      		SM3_done(&md, Ha);
      		memcpy((K + SM2_NUMWORD * (i - 1)), Ha, SM2_NUMWORD);
      		if (ct[3] == 0xff)
      		{
      			ct[3] = 0;
      			if (ct[2] == 0xff)
      			{
      				ct[2] = 0;
      				if (ct[1] == 0xff)
      				{
      					ct[1] = 0;
      					ct[0]++;
      				}
      				else ct[1]++;
      			}
      			else ct[2]++;
      		}
      		else ct[3]++;
      	}
      	//s3: klen/v       ?0?6   
      	SM3_init(&md);
      	SM3_process(&md, Z, zlen);
      	SM3_process(&md, ct, 4);
      	SM3_done(&md, Ha);
      	if (bitklen%SM2_NUMBITS)
      	{
      		i = (SM2_NUMBITS - bitklen + SM2_NUMBITS * (bitklen / SM2_NUMBITS)) / 8;
      		j = (bitklen - SM2_NUMBITS * (bitklen / SM2_NUMBITS)) / 8;
      		memcpy((K + SM2_NUMWORD * (t - 1)), Ha, j);
      	}
      	else
      	{
      		memcpy((K + SM2_NUMWORD * (t - 1)), Ha, SM2_NUMWORD);
      	}
      }
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat miracl.h
      /***************************************************************************
                                                                                 *
      Copyright 2013 CertiVox UK Ltd.                                           *
                                                                                 *
      This file is part of CertiVox MIRACL Crypto SDK.                           *
                                                                                 *
      The CertiVox MIRACL Crypto SDK provides developers with an                 *
      extensive and efficient set of cryptographic functions.                    *
      For further information about its features and functionalities please      *
      refer to http://www.certivox.com                                           *
                                                                                 *
      * The CertiVox MIRACL Crypto SDK is free software: you can                 *
        redistribute it and/or modify it under the terms of the                  *
        GNU Affero General Public License as published by the                    *
        Free Software Foundation, either version 3 of the License,               *
        or (at your option) any later version.                                   *
                                                                                 *
      * The CertiVox MIRACL Crypto SDK is distributed in the hope                *
        that it will be useful, but WITHOUT ANY WARRANTY; without even the       *
        implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
        See the GNU Affero General Public License for more details.              *
                                                                                 *
      * You should have received a copy of the GNU Affero General Public         *
        License along with CertiVox MIRACL Crypto SDK.                           *
        If not, see <http://www.gnu.org/licenses/>.                              *
                                                                                 *
      You can be released from the requirements of the license by purchasing     *
      a commercial license. Buying such a license is mandatory as soon as you    *
      develop commercial activities involving the CertiVox MIRACL Crypto SDK     *
      without disclosing the source code of your own applications, or shipping   *
      the CertiVox MIRACL Crypto SDK with a closed source product.               *
                                                                                 *
      ***************************************************************************/
      
      #ifndef MIRACL_H
      #define MIRACL_H
      
      /*
       *   main MIRACL header - miracl.h.
       */
      
      #include "mirdef.h"
      
      /* Some modifiable defaults... */
      
      /* Use a smaller buffer if space is limited, don't be so wasteful! */
      
      #ifdef MR_STATIC
      #define MR_DEFAULT_BUFFER_SIZE 260
      #else
      #define MR_DEFAULT_BUFFER_SIZE 1024
      #endif
      
      /* see mrgf2m.c */
      
      #ifndef MR_KARATSUBA
      #define MR_KARATSUBA 2
      #endif
      
      #ifndef MR_DOUBLE_BIG
      
      #ifdef MR_KCM
        #ifdef MR_FLASH
          #define MR_SPACES 32
        #else
          #define MR_SPACES 31
        #endif
      #else
        #ifdef MR_FLASH
          #define MR_SPACES 28
        #else
          #define MR_SPACES 27
        #endif
      #endif
      
      #else
      
      #ifdef MR_KCM
        #ifdef MR_FLASH
          #define MR_SPACES 44
        #else
          #define MR_SPACES 43
        #endif
      #else
        #ifdef MR_FLASH
          #define MR_SPACES 40
        #else
          #define MR_SPACES 39
        #endif
      #endif
      
      #endif
      
      /* To avoid name clashes - undefine this */
      
      /* #define compare mr_compare */
      
      #ifdef MR_AVR
      #include <avr/pgmspace.h>
      #endif
      
      /* size of bigs and elliptic curve points for memory allocation from stack or heap */
      
      #define MR_ROUNDUP(a,b) ((a)-1)/(b)+1
      
      #define MR_SL sizeof(long)
      
      #ifdef MR_STATIC
      
      #define MR_SIZE (((sizeof(struct bigtype)+(MR_STATIC+2)*sizeof(mr_utype))-1)/MR_SL+1)*MR_SL
      #define MR_BIG_RESERVE(n) ((n)*MR_SIZE+MR_SL)
      
      #ifdef MR_AFFINE_ONLY
      #define MR_ESIZE (((sizeof(epoint)+MR_BIG_RESERVE(2))-1)/MR_SL+1)*MR_SL
      #else
      #define MR_ESIZE (((sizeof(epoint)+MR_BIG_RESERVE(3))-1)/MR_SL+1)*MR_SL
      #endif
      #define MR_ECP_RESERVE(n) ((n)*MR_ESIZE+MR_SL)
      
      #define MR_ESIZE_A (((sizeof(epoint)+MR_BIG_RESERVE(2))-1)/MR_SL+1)*MR_SL
      #define MR_ECP_RESERVE_A(n) ((n)*MR_ESIZE_A+MR_SL)
      
      
      #endif
      
      /* useful macro to convert size of big in words, to size of required structure */
      
      #define mr_size(n) (((sizeof(struct bigtype)+((n)+2)*sizeof(mr_utype))-1)/MR_SL+1)*MR_SL
      #define mr_big_reserve(n,m) ((n)*mr_size(m)+MR_SL)
      
      #define mr_esize_a(n) (((sizeof(epoint)+mr_big_reserve(2,(n)))-1)/MR_SL+1)*MR_SL 
      #define mr_ecp_reserve_a(n,m) ((n)*mr_esize_a(m)+MR_SL)
      
      #ifdef MR_AFFINE_ONLY
      #define mr_esize(n) (((sizeof(epoint)+mr_big_reserve(2,(n)))-1)/MR_SL+1)*MR_SL 
      #else
      #define mr_esize(n) (((sizeof(epoint)+mr_big_reserve(3,(n)))-1)/MR_SL+1)*MR_SL 
      #endif
      #define mr_ecp_reserve(n,m) ((n)*mr_esize(m)+MR_SL)
      
      
      /* if basic library is static, make sure and use static C++ */
      
      #ifdef MR_STATIC
       #ifndef BIGS
        #define BIGS MR_STATIC
       #endif
       #ifndef ZZNS
        #define ZZNS MR_STATIC
       #endif
       #ifndef GF2MS
        #define GF2MS MR_STATIC
       #endif
      #endif
      
      #ifdef __ia64__
      #if MIRACL==64
      #define MR_ITANIUM
      #include <ia64intrin.h>
      #endif
      #endif
      
      #ifdef _M_X64
      #ifdef _WIN64
      #if MIRACL==64
      #define MR_WIN64
      #include <intrin.h>
      #endif
      #endif
      #endif
      
      #ifndef MR_NO_FILE_IO
      #include <stdio.h>
      #endif
                     /* error returns */
      
      #define MR_ERR_BASE_TOO_BIG       1
      #define MR_ERR_DIV_BY_ZERO        2
      #define MR_ERR_OVERFLOW           3
      #define MR_ERR_NEG_RESULT         4
      #define MR_ERR_BAD_FORMAT         5
      #define MR_ERR_BAD_BASE           6
      #define MR_ERR_BAD_PARAMETERS     7
      #define MR_ERR_OUT_OF_MEMORY      8
      #define MR_ERR_NEG_ROOT           9
      #define MR_ERR_NEG_POWER         10
      #define MR_ERR_BAD_ROOT          11
      #define MR_ERR_INT_OP            12
      #define MR_ERR_FLASH_OVERFLOW    13
      #define MR_ERR_TOO_BIG           14
      #define MR_ERR_NEG_LOG           15
      #define MR_ERR_DOUBLE_FAIL       16
      #define MR_ERR_IO_OVERFLOW       17
      #define MR_ERR_NO_MIRSYS         18
      #define MR_ERR_BAD_MODULUS       19
      #define MR_ERR_NO_MODULUS        20
      #define MR_ERR_EXP_TOO_BIG       21
      #define MR_ERR_NOT_SUPPORTED     22
      #define MR_ERR_NOT_DOUBLE_LEN    23
      #define MR_ERR_NOT_IRREDUC       24
      #define MR_ERR_NO_ROUNDING       25
      #define MR_ERR_NOT_BINARY        26
      #define MR_ERR_NO_BASIS          27
      #define MR_ERR_COMPOSITE_MODULUS 28
      #define MR_ERR_DEV_RANDOM        29
      
                     /* some useful definitions */
      
      #define forever for(;;)   
      
      #define mr_abs(x)  ((x)<0? (-(x)) : (x))
      
      #ifndef TRUE
        #define TRUE 1
      #endif
      #ifndef FALSE
        #define FALSE 0
      #endif
      
      #define OFF 0
      #define ON 1
      #define PLUS 1
      #define MINUS (-1)
      
      #define M1 (MIRACL-1)
      #define M2 (MIRACL-2)
      #define M3 (MIRACL-3)
      #define M4 (MIRACL-4)
      #define TOPBIT ((mr_small)1<<M1)
      #define SECBIT ((mr_small)1<<M2)
      #define THDBIT ((mr_small)1<<M3)
      #define M8 (MIRACL-8)
      
      #define MR_MAXDEPTH 24
                                    /* max routine stack depth */
      /* big and flash variables consist of an encoded length, *
       * and an array of mr_smalls containing the digits       */
      
      #ifdef MR_COUNT_OPS
      extern int fpm2,fpi2,fpc,fpa,fpx;
      #endif
      
      typedef int BOOL;
      
      #define MR_BYTE unsigned char
      
      #ifdef MR_BITSINCHAR
       #if MR_BITSINCHAR == 8
        #define MR_TOBYTE(x) ((MR_BYTE)(x))
       #else
        #define MR_TOBYTE(x) ((MR_BYTE)((x)&0xFF))
       #endif
      #else
       #define MR_TOBYTE(x) ((MR_BYTE)(x))
      #endif
      
      #ifdef MR_FP
      
        typedef mr_utype mr_small;
        #ifdef mr_dltype
        typedef mr_dltype mr_large;
        #endif
      
        #define MR_DIV(a,b)    (modf((a)/(b),&dres),dres)
      
        #ifdef MR_FP_ROUNDING
      
      /* slightly dicey - for example the optimizer might remove the MAGIC ! */
      
          #define MR_LROUND(a)   ( ( (a) + MR_MAGIC ) - MR_MAGIC )
        #else
          #define MR_LROUND(a)   (modfl((a),&ldres),ldres)
        #endif
      
        #define MR_REMAIN(a,b) ((a)-(b)*MR_DIV((a),(b)))
      
      #else
      
        typedef unsigned mr_utype mr_small;
        #ifdef mr_dltype
          typedef unsigned mr_dltype mr_large;
        #endif
        #ifdef mr_qltype
          typedef unsigned mr_qltype mr_vlarge;
        #endif
      
        #define MR_DIV(a,b)    ((a)/(b))
        #define MR_REMAIN(a,b) ((a)%(b))
        #define MR_LROUND(a)   ((a))
      #endif
      
      
      /* It might be wanted to change this to unsigned long */
      
      typedef unsigned int mr_lentype;
      
      struct bigtype
      {
          mr_lentype len;
          mr_small *w;
      };                
      
      typedef struct bigtype *big;
      typedef big zzn;
      
      typedef big flash;
      
      #define MR_MSBIT ((mr_lentype)1<<(MR_IBITS-1))
      
      #define MR_OBITS (MR_MSBIT-1)
      
      #if MIRACL >= MR_IBITS
      #define MR_TOOBIG (1<<(MR_IBITS-2))
      #else
      #define MR_TOOBIG (1<<(MIRACL-1))
      #endif
      
      #ifdef  MR_FLASH
      #define MR_EBITS (8*sizeof(double) - MR_FLASH)
                                        /* no of Bits per double exponent */
      #define MR_BTS 16
      #define MR_MSK 0xFFFF
      
      #endif
      
      /* Default Hash function output size in bytes */
      #define MR_HASH_BYTES     32
      
      /* Marsaglia & Zaman Random number generator */
      /*         constants      alternatives       */
      #define NK   37           /* 21 */
      #define NJ   24           /*  6 */
      #define NV   14           /*  8 */
      
      /* Use smaller values if memory is precious */
      
      #ifdef mr_dltype
      
      #ifdef MR_LITTLE_ENDIAN 
      #define MR_BOT 0
      #define MR_TOP 1
      #endif
      #ifdef MR_BIG_ENDIAN
      #define MR_BOT 1
      #define MR_TOP 0
      #endif
      
      union doubleword
      {
          mr_large d;
          mr_small h[2];
      };
      
      #endif
      
      /* chinese remainder theorem structures */
      
      typedef struct {
      big *C;
      big *V;
      big *M;
      int NP;
      } big_chinese;
      
      typedef struct {
      mr_utype *C;
      mr_utype *V;
      mr_utype *M;
      int NP;
      } small_chinese;
      
      /* Cryptographically strong pseudo-random number generator */
      
      typedef struct {
      mr_unsign32 ira[NK];  /* random number...   */
      int         rndptr;   /* ...array & pointer */
      mr_unsign32 borrow;
      int pool_ptr;
      char pool[MR_HASH_BYTES];    /* random pool */
      } csprng;
      
      /* secure hash Algorithm structure */
      
      typedef struct {
      mr_unsign32 length[2];
      mr_unsign32 h[8];
      mr_unsign32 w[80];
      } sha256;
      
      typedef sha256 sha;
      
      #ifdef mr_unsign64
      
      typedef struct {
      mr_unsign64 length[2];
      mr_unsign64 h[8];
      mr_unsign64 w[80];
      } sha512;
      
      typedef sha512 sha384;
      
      typedef struct {
      mr_unsign64 length;
      mr_unsign64 S[5][5];
      int rate,len;
      } sha3;
      
      #endif
      
      /* Symmetric Encryption algorithm structure */
      
      #define MR_ECB   0
      #define MR_CBC   1
      #define MR_CFB1  2
      #define MR_CFB2  3
      #define MR_CFB4  5
      #define MR_PCFB1 10
      #define MR_PCFB2 11
      #define MR_PCFB4 13
      #define MR_OFB1  14
      #define MR_OFB2  15
      #define MR_OFB4  17
      #define MR_OFB8  21
      #define MR_OFB16 29
      
      typedef struct {
      int Nk,Nr;
      int mode;
      mr_unsign32 fkey[60];
      mr_unsign32 rkey[60];
      char f[16];
      } aes;
      
      /* AES-GCM suppport. See mrgcm.c */
      
      #define GCM_ACCEPTING_HEADER 0
      #define GCM_ACCEPTING_CIPHER 1
      #define GCM_NOT_ACCEPTING_MORE 2
      #define GCM_FINISHED 3
      #define GCM_ENCRYPTING 0
      #define GCM_DECRYPTING 1
      
      typedef struct {
      mr_unsign32 table[128][4]; /* 2k bytes */
      MR_BYTE stateX[16];
      MR_BYTE Y_0[16];
      mr_unsign32 counter;
      mr_unsign32 lenA[2],lenC[2];
      int status;
      aes a;
      } gcm;
      
                     /* Elliptic curve point status */
      
      #define MR_EPOINT_GENERAL    0
      #define MR_EPOINT_NORMALIZED 1
      #define MR_EPOINT_INFINITY   2
      
      #define MR_NOTSET     0
      #define MR_PROJECTIVE 0
      #define MR_AFFINE     1
      #define MR_BEST       2
      #define MR_TWIST      8
      
      #define MR_OVER       0
      #define MR_ADD        1
      #define MR_DOUBLE     2
      
      /* Twist type */
      
      #define MR_QUADRATIC 2
      #define MR_CUBIC_M   0x3A
      #define MR_CUBIC_D   0x3B
      #define MR_QUARTIC_M 0x4A
      #define MR_QUARTIC_D 0x4B
      #define MR_SEXTIC_M  0x6A
      #define MR_SEXTIC_D  0x6B
      
      
      /* Fractional Sliding Windows for ECC - how much precomputation storage to use ? */
      /* Note that for variable point multiplication there is an optimal value 
         which can be reduced if space is short. For fixed points its a matter of 
         how much ROM is available to store precomputed points.
         We are storing the k points (P,3P,5P,7P,...,[2k-1].P) */
      
      /* These values can be manually tuned for optimal performance... */
      
      #ifdef MR_SMALL_EWINDOW
      #define MR_ECC_STORE_N  3   /* point store for ecn  variable point multiplication */
      #define MR_ECC_STORE_2M 3   /* point store for ec2m variable point multiplication */
      #define MR_ECC_STORE_N2 3   /* point store for ecn2 variable point multiplication */
      #else
      #define MR_ECC_STORE_N  8   /* 8/9 is close to optimal for 256 bit exponents */
      #define MR_ECC_STORE_2M 9   
      #define MR_ECC_STORE_N2 8   
      #endif
      
      /*#define MR_ECC_STORE_N2_PRECOMP MR_ECC_STORE_N2 */
                                  /* Might want to make this bigger.. */
      
      /* If multi-addition is of m points, and s precomputed values are required, this is max of m*s (=4.10?) */
      #define MR_MAX_M_T_S 64
      
      /* Elliptic Curve epoint structure. Uses projective (X,Y,Z) co-ordinates */
      
      typedef struct {
      int marker;
      big X;
      big Y;
      #ifndef MR_AFFINE_ONLY
      big Z;
      #endif
      } epoint;
      
      
      /* Structure for Comb method for finite *
         field exponentiation with precomputation */
      
      typedef struct {
      #ifdef MR_STATIC
          const mr_small *table;
      #else
          mr_small *table;
      #endif
          big n; 
          int window;
          int max;
      } brick;
      
      /* Structure for Comb method for elliptic *
         curve exponentiation with precomputation  */
      
      typedef struct {
      #ifdef MR_STATIC
          const mr_small *table; 
      #else
          mr_small *table;
      #endif
          big a,b,n;
          int window;
          int max;
      } ebrick;
      
      typedef struct {
      #ifdef MR_STATIC
          const mr_small *table;
      #else
          mr_small *table;
      #endif
          big a6,a2;
          int m,a,b,c;
          int window;
          int max;
      } ebrick2;
      
      typedef struct
      {
          big a;
          big b;
      } zzn2;
      
      typedef struct
      {
          zzn2 a;
          zzn2 b;
          BOOL unitary;
      } zzn4;
      
      typedef struct 
      {
          int marker;
          zzn2 x;
          zzn2 y;
      #ifndef MR_AFFINE_ONLY
          zzn2 z;
      #endif
      
      } ecn2;
      
      typedef struct
      {
          big a;
          big b;
          big c;
      } zzn3;
      
      typedef struct
      {
      	zzn2 a;
      	zzn2 b;
      	zzn2 c;
      } zzn6_3x2;
      
      /* main MIRACL instance structure */
      
      /* ------------------------------------------------------------------------*/
      
      typedef struct {
      mr_small base;       /* number base     */
      mr_small apbase;     /* apparent base   */
      int   pack;          /* packing density */
      int   lg2b;          /* bits in base    */
      mr_small base2;      /* 2^mr_lg2b          */
      BOOL (*user)(void);  /* pointer to user supplied function */
      
      int   nib;           /* length of bigs  */
      #ifndef MR_STRIPPED_DOWN
      int   depth;                 /* error tracing ..*/
      int   trace[MR_MAXDEPTH];    /* .. mechanism    */
      #endif
      BOOL  check;         /* overflow check  */
      BOOL  fout;          /* Output to file   */
      BOOL  fin;           /* Input from file  */
      BOOL  active;
      
      #ifndef MR_NO_FILE_IO
      
      FILE  *infile;       /* Input file       */
      FILE  *otfile;       /* Output file      */
      
      #endif
      
      
      #ifndef MR_NO_RAND
      mr_unsign32 ira[NK];  /* random number...   */
      int         rndptr;   /* ...array & pointer */
      mr_unsign32 borrow;
      #endif
      
                  /* Montgomery constants */
      mr_small ndash;
      big modulus;
      big pR;
      BOOL ACTIVE;
      BOOL MONTY;
      
                             /* Elliptic Curve details   */
      #ifndef MR_NO_SS
      BOOL SS;               /* True for Super-Singular  */
      #endif
      #ifndef MR_NOKOBLITZ
      BOOL KOBLITZ;          /* True for a Koblitz curve */
      #endif
      #ifndef MR_AFFINE_ONLY
      int coord;
      #endif
      int Asize,Bsize;
      
      int M,AA,BB,CC;     /* for GF(2^m) curves */
      
      /*
      mr_small pm,mask;
      int e,k,Me,m;       for GF(p^m) curves */
      
      
      #ifndef MR_STATIC
      
      int logN;           /* constants for fast fourier fft multiplication */
      int nprimes,degree;
      mr_utype *prime,*cr;
      mr_utype *inverse,**roots;
      small_chinese chin;
      mr_utype const1,const2,const3;
      mr_small msw,lsw;
      mr_utype **s1,**s2;   /* pre-computed tables for polynomial reduction */
      mr_utype **t;         /* workspace */
      mr_utype *wa;
      mr_utype *wb;
      mr_utype *wc;
      
      #endif
      
      BOOL same;
      BOOL first_one;
      BOOL debug;
      
      big w0;            /* workspace bigs  */
      big w1,w2,w3,w4;
      big w5,w6,w7;
      big w8,w9,w10,w11;
      big w12,w13,w14,w15;
      big sru;
      big one;
      
      #ifdef MR_KCM
      big big_ndash;
      big ws,wt;
      #endif
      
      big A,B;
      
      /* User modifiables */
      
      #ifndef MR_SIMPLE_IO
      int  IOBSIZ;       /* size of i/o buffer */
      #endif
      BOOL ERCON;        /* error control   */
      int  ERNUM;        /* last error code */
      int  NTRY;         /* no. of tries for probablistic primality testing   */
      #ifndef MR_SIMPLE_IO
      int  INPLEN;       /* input length               */
      #ifndef MR_SIMPLE_BASE
      int  IOBASE;       /* base for input and output */
      
      #endif
      #endif
      #ifdef MR_FLASH
      BOOL EXACT;        /* exact flag      */
      BOOL RPOINT;       /* =ON for radix point, =OFF for fractions in output */
      #endif
      #ifndef MR_STRIPPED_DOWN
      BOOL TRACER;       /* turns trace tracker on/off */
      #endif
      
      #ifdef MR_STATIC
      const int *PRIMES;                      /* small primes array         */
      #ifndef MR_SIMPLE_IO
      char IOBUFF[MR_DEFAULT_BUFFER_SIZE];    /* i/o buffer    */
      #endif
      #else
      int *PRIMES;        /* small primes array         */
      #ifndef MR_SIMPLE_IO
      char *IOBUFF;       /* i/o buffer    */
      #endif
      #endif
      
      #ifdef MR_FLASH
      int   workprec;
      int   stprec;        /* start precision */
      
      int RS,RD;
      double D;
      
      double db,n,p;
      int a,b,c,d,r,q,oldn,ndig;
      mr_small u,v,ku,kv;
      
      BOOL last,carryon;
      flash pi;
      
      #endif
      
      #ifdef MR_FP_ROUNDING
      mr_large inverse_base;
      #endif
      
      #ifndef MR_STATIC
      char *workspace;
      #else
      char workspace[MR_BIG_RESERVE(MR_SPACES)];
      #endif
      
      int TWIST; /* set to twisted curve */
      int qnr;    /* a QNR -1 for p=3 mod 4, -2 for p=5 mod 8, 0 otherwise */
      int cnr;    /* a cubic non-residue */
      int pmod8;
      int pmod9;
      BOOL NO_CARRY;
      } miracl;
      
      /* ------------------------------------------------------------------------*/
      
      
      #ifndef MR_GENERIC_MT
      
      #ifdef MR_WINDOWS_MT
      #define MR_OS_THREADS
      #endif
      
      #ifdef MR_UNIX_MT
      #define MR_OS_THREADS
      #endif
      
      #ifdef MR_OPENMP_MT
      #define MR_OS_THREADS
      #endif
      
      
      #ifndef MR_OS_THREADS
      
      extern miracl *mr_mip;  /* pointer to MIRACL's only global variable */
      
      #endif
      
      #endif
      
      #ifdef MR_GENERIC_MT
      
      #ifdef MR_STATIC
      #define MR_GENERIC_AND_STATIC
      #endif
      
      #define _MIPT_  miracl *,
      #define _MIPTO_ miracl *
      #define _MIPD_  miracl *mr_mip,
      #define _MIPDO_ miracl *mr_mip
      #define _MIPP_  mr_mip,
      #define _MIPPO_ mr_mip
      
      #else
      
      #define _MIPT_    
      #define _MIPTO_  void  
      #define _MIPD_    
      #define _MIPDO_  void  
      #define _MIPP_    
      #define _MIPPO_    
      
      #endif
      
      /* Preamble and exit code for MIRACL routines. *
       * Not used if MR_STRIPPED_DOWN is defined     */ 
      
      #ifdef MR_STRIPPED_DOWN
      #define MR_OUT
      #define MR_IN(N)
      #else
      #define MR_OUT  mr_mip->depth--;        
      #define MR_IN(N) mr_mip->depth++; if (mr_mip->depth<MR_MAXDEPTH) {mr_mip->trace[mr_mip->depth]=(N); if (mr_mip->TRACER) mr_track(_MIPPO_); }
      #endif
      
      /* Function definitions  */
      
      /* Group 0 - Internal routines */
      
      extern void  mr_berror(_MIPT_ int);
      extern mr_small mr_shiftbits(mr_small,int);
      extern mr_small mr_setbase(_MIPT_ mr_small);
      extern void  mr_track(_MIPTO_ );
      extern void  mr_lzero(big);
      extern BOOL  mr_notint(flash);
      extern int   mr_lent(flash);
      extern void  mr_padd(_MIPT_ big,big,big);
      extern void  mr_psub(_MIPT_ big,big,big);
      extern void  mr_pmul(_MIPT_ big,mr_small,big);
      #ifdef MR_FP_ROUNDING
      extern mr_large mr_invert(mr_small);
      extern mr_small imuldiv(mr_small,mr_small,mr_small,mr_small,mr_large,mr_small *);
      extern mr_small mr_sdiv(_MIPT_ big,mr_small,mr_large,big);
      #else
      extern mr_small mr_sdiv(_MIPT_ big,mr_small,big);
      extern void mr_and(big,big,big);
      extern void mr_xor(big,big,big);
      #endif
      extern void  mr_shift(_MIPT_ big,int,big); 
      extern miracl *mr_first_alloc(void);
      extern void  *mr_alloc(_MIPT_ int,int);
      extern void  mr_free(void *);  
      extern void  set_user_function(_MIPT_ BOOL (*)(void));
      extern void  set_io_buffer_size(_MIPT_ int);
      extern int   mr_testbit(_MIPT_ big,int);
      extern void  mr_addbit(_MIPT_ big,int);
      extern int   recode(_MIPT_ big ,int ,int ,int );
      extern int   mr_window(_MIPT_ big,int,int *,int *,int);
      extern int   mr_window2(_MIPT_ big,big,int,int *,int *);
      extern int   mr_naf_window(_MIPT_ big,big,int,int *,int *,int);
      
      extern int   mr_fft_init(_MIPT_ int,big,big,BOOL);
      extern void  mr_dif_fft(_MIPT_ int,int,mr_utype *);
      extern void  mr_dit_fft(_MIPT_ int,int,mr_utype *);
      extern void  fft_reset(_MIPTO_);
      
      extern int   mr_poly_mul(_MIPT_ int,big*,int,big*,big*);
      extern int   mr_poly_sqr(_MIPT_ int,big*,big*);
      extern void  mr_polymod_set(_MIPT_ int,big*,big*);
      extern int   mr_poly_rem(_MIPT_ int,big *,big *);
      
      extern int   mr_ps_big_mul(_MIPT_ int,big *,big *,big *);
      extern int   mr_ps_zzn_mul(_MIPT_ int,big *,big *,big *);
      
      extern mr_small muldiv(mr_small,mr_small,mr_small,mr_small,mr_small *);
      extern mr_small muldvm(mr_small,mr_small,mr_small,mr_small *); 
      extern mr_small muldvd(mr_small,mr_small,mr_small,mr_small *); 
      extern void     muldvd2(mr_small,mr_small,mr_small *,mr_small *); 
      
      extern flash mirvar_mem_variable(char *,int,int);
      extern epoint* epoint_init_mem_variable(_MIPT_ char *,int,int);
      
      /* Group 1 - General purpose, I/O and basic arithmetic routines  */
      
      extern unsigned int   igcd(unsigned int,unsigned int); 
      extern unsigned long  lgcd(unsigned long,unsigned long); 
      extern mr_small sgcd(mr_small,mr_small);
      extern unsigned int   isqrt(unsigned int,unsigned int);
      extern unsigned long  mr_lsqrt(unsigned long,unsigned long);
      extern void  irand(_MIPT_ mr_unsign32);
      extern mr_small brand(_MIPTO_ );       
      extern void  zero(flash);
      extern void  convert(_MIPT_ int,big);
      extern void  uconvert(_MIPT_ unsigned int,big);
      extern void  lgconv(_MIPT_ long,big);
      extern void  ulgconv(_MIPT_ unsigned long,big);
      extern void  tconvert(_MIPT_ mr_utype,big);
      
      #ifdef mr_dltype
      extern void  dlconv(_MIPT_ mr_dltype,big);
      #endif
      
      extern flash mirvar(_MIPT_ int);
      extern flash mirvar_mem(_MIPT_ char *,int);
      extern void  mirkill(big);
      extern void  *memalloc(_MIPT_ int);
      extern void  memkill(_MIPT_ char *,int);
      extern void  mr_init_threading(void);
      extern void  mr_end_threading(void);
      extern miracl *get_mip(void );
      extern void  set_mip(miracl *);
      #ifdef MR_GENERIC_AND_STATIC
      extern miracl *mirsys(miracl *,int,mr_small);
      #else
      extern miracl *mirsys(int,mr_small);
      #endif
      extern miracl *mirsys_basic(miracl *,int,mr_small);
      extern void  mirexit(_MIPTO_ );
      extern int   exsign(flash);
      extern void  insign(int,flash);
      extern int   getdig(_MIPT_ big,int);  
      extern int   numdig(_MIPT_ big);        
      extern void  putdig(_MIPT_ int,big,int);
      extern void  copy(flash,flash);  
      extern void  negify(flash,flash);
      extern void  absol(flash,flash); 
      extern int   size(big);
      extern int   mr_compare(big,big);
      extern void  add(_MIPT_ big,big,big);
      extern void  subtract(_MIPT_ big,big,big);
      extern void  incr(_MIPT_ big,int,big);    
      extern void  decr(_MIPT_ big,int,big);    
      extern void  premult(_MIPT_ big,int,big); 
      extern int   subdiv(_MIPT_ big,int,big);  
      extern BOOL  subdivisible(_MIPT_ big,int);
      extern int   remain(_MIPT_ big,int);   
      extern void  bytes_to_big(_MIPT_ int,const char *,big);
      extern int   big_to_bytes(_MIPT_ int,big,char *,BOOL);
      extern mr_small normalise(_MIPT_ big,big);
      extern void  multiply(_MIPT_ big,big,big);
      extern void  fft_mult(_MIPT_ big,big,big);
      extern BOOL  fastmultop(_MIPT_ int,big,big,big);
      extern void  divide(_MIPT_ big,big,big);  
      extern BOOL  divisible(_MIPT_ big,big);   
      extern void  mad(_MIPT_ big,big,big,big,big,big);
      extern int   instr(_MIPT_ flash,char *);
      extern int   otstr(_MIPT_ flash,char *);
      extern int   cinstr(_MIPT_ flash,char *);
      extern int   cotstr(_MIPT_ flash,char *);
      extern epoint* epoint_init(_MIPTO_ );
      extern epoint* epoint_init_mem(_MIPT_ char *,int);
      extern void* ecp_memalloc(_MIPT_ int);
      void ecp_memkill(_MIPT_ char *,int);
      BOOL init_big_from_rom(big,int,const mr_small *,int ,int *);
      BOOL init_point_from_rom(epoint *,int,const mr_small *,int,int *);
      
      #ifndef MR_NO_FILE_IO
      
      extern int   innum(_MIPT_ flash,FILE *);          
      extern int   otnum(_MIPT_ flash,FILE *);
      extern int   cinnum(_MIPT_ flash,FILE *);
      extern int   cotnum(_MIPT_ flash,FILE *);
      
      #endif
      
      /* Group 2 - Advanced arithmetic routines */
      
      extern mr_small smul(mr_small,mr_small,mr_small);
      extern mr_small spmd(mr_small,mr_small,mr_small); 
      extern mr_small invers(mr_small,mr_small);
      extern mr_small sqrmp(mr_small,mr_small);
      extern int      jac(mr_small,mr_small);
      
      extern void  gprime(_MIPT_ int);
      extern int   jack(_MIPT_ big,big);
      extern int   egcd(_MIPT_ big,big,big);
      extern int   xgcd(_MIPT_ big,big,big,big,big);
      extern int   invmodp(_MIPT_ big,big,big);
      extern int   logb2(_MIPT_ big);
      extern int   hamming(_MIPT_ big);
      extern void  expb2(_MIPT_ int,big);
      extern void  bigbits(_MIPT_ int,big);
      extern void  expint(_MIPT_ int,int,big);
      extern void  sftbit(_MIPT_ big,int,big);
      extern void  power(_MIPT_ big,long,big,big);
      extern void  powmod(_MIPT_ big,big,big,big);
      extern void  powmod2(_MIPT_ big,big,big,big,big,big);
      extern void  powmodn(_MIPT_ int,big *,big *,big,big);
      extern int   powltr(_MIPT_ int,big,big,big);
      extern BOOL  double_inverse(_MIPT_ big,big,big,big,big);
      extern BOOL  multi_inverse(_MIPT_ int,big*,big,big*);
      extern void  lucas(_MIPT_ big,big,big,big,big);
      extern BOOL  nroot(_MIPT_ big,int,big);
      extern BOOL  sqroot(_MIPT_ big,big,big);
      extern void  bigrand(_MIPT_ big,big);
      extern void  bigdig(_MIPT_ int,int,big);
      extern int   trial_division(_MIPT_ big,big);
      extern BOOL  isprime(_MIPT_ big);
      extern BOOL  nxprime(_MIPT_ big,big);
      extern BOOL  nxsafeprime(_MIPT_ int,int,big,big);
      extern BOOL  crt_init(_MIPT_ big_chinese *,int,big *);
      extern void  crt(_MIPT_ big_chinese *,big *,big);
      extern void  crt_end(big_chinese *);
      extern BOOL  scrt_init(_MIPT_ small_chinese *,int,mr_utype *);    
      extern void  scrt(_MIPT_ small_chinese*,mr_utype *,big); 
      extern void  scrt_end(small_chinese *);
      #ifndef MR_STATIC
      extern BOOL  brick_init(_MIPT_ brick *,big,big,int,int);
      extern void  brick_end(brick *);
      #else
      extern void  brick_init(brick *,const mr_small *,big,int,int);
      #endif
      extern void  pow_brick(_MIPT_ brick *,big,big);
      #ifndef MR_STATIC
      extern BOOL  ebrick_init(_MIPT_ ebrick *,big,big,big,big,big,int,int);
      extern void  ebrick_end(ebrick *);
      #else
      extern void  ebrick_init(ebrick *,const mr_small *,big,big,big,int,int);
      #endif
      extern int   mul_brick(_MIPT_ ebrick*,big,big,big);
      #ifndef MR_STATIC
      extern BOOL  ebrick2_init(_MIPT_ ebrick2 *,big,big,big,big,int,int,int,int,int,int);
      extern void  ebrick2_end(ebrick2 *);
      #else
      extern void  ebrick2_init(ebrick2 *,const mr_small *,big,big,int,int,int,int,int,int);
      #endif
      extern int   mul2_brick(_MIPT_ ebrick2*,big,big,big);
      
      /* Montgomery stuff */
      
      extern mr_small prepare_monty(_MIPT_ big);
      extern void  kill_monty(_MIPTO_ );
      extern void  nres(_MIPT_ big,big);        
      extern void  redc(_MIPT_ big,big);        
      
      extern void  nres_negate(_MIPT_ big,big);
      extern void  nres_modadd(_MIPT_ big,big,big);  
      extern void  nres_modsub(_MIPT_ big,big,big); 
      extern void  nres_lazy(_MIPT_ big,big,big,big,big,big);
      extern void  nres_complex(_MIPT_ big,big,big,big);
      extern void  nres_double_modadd(_MIPT_ big,big,big);    
      extern void  nres_double_modsub(_MIPT_ big,big,big); 
      extern void  nres_premult(_MIPT_ big,int,big);
      extern void  nres_modmult(_MIPT_ big,big,big);    
      extern int   nres_moddiv(_MIPT_ big,big,big);     
      extern void  nres_dotprod(_MIPT_ int,big *,big *,big);
      extern void  nres_powmod(_MIPT_ big,big,big);     
      extern void  nres_powltr(_MIPT_ int,big,big);     
      extern void  nres_powmod2(_MIPT_ big,big,big,big,big);     
      extern void  nres_powmodn(_MIPT_ int,big *,big *,big);
      extern BOOL  nres_sqroot(_MIPT_ big,big);
      extern void  nres_lucas(_MIPT_ big,big,big,big);
      extern BOOL  nres_double_inverse(_MIPT_ big,big,big,big);
      extern BOOL  nres_multi_inverse(_MIPT_ int,big *,big *);
      extern void  nres_div2(_MIPT_ big,big);
      extern void  nres_div3(_MIPT_ big,big);
      extern void  nres_div5(_MIPT_ big,big);
      
      extern void  shs_init(sha *);
      extern void  shs_process(sha *,int);
      extern void  shs_hash(sha *,char *);
      
      extern void  shs256_init(sha256 *);
      extern void  shs256_process(sha256 *,int);
      extern void  shs256_hash(sha256 *,char *);
      
      #ifdef mr_unsign64
      
      extern void  shs512_init(sha512 *);
      extern void  shs512_process(sha512 *,int);
      extern void  shs512_hash(sha512 *,char *);
      
      extern void  shs384_init(sha384 *);
      extern void  shs384_process(sha384 *,int);
      extern void  shs384_hash(sha384 *,char *);
      
      extern void  sha3_init(sha3 *,int);
      extern void  sha3_process(sha3 *,int);
      extern void  sha3_hash(sha3 *,char *);
      
      #endif
      
      extern BOOL  aes_init(aes *,int,int,char *,char *);
      extern void  aes_getreg(aes *,char *);
      extern void  aes_ecb_encrypt(aes *,MR_BYTE *);
      extern void  aes_ecb_decrypt(aes *,MR_BYTE *);
      extern mr_unsign32 aes_encrypt(aes *,char *);
      extern mr_unsign32 aes_decrypt(aes *,char *);
      extern void  aes_reset(aes *,int,char *);
      extern void  aes_end(aes *);
      
      extern void  gcm_init(gcm *,int,char *,int,char *);
      extern BOOL  gcm_add_header(gcm *,char *,int);
      extern BOOL  gcm_add_cipher(gcm *,int,char *,int,char *);
      extern void  gcm_finish(gcm *,char *);
      
      extern void FPE_encrypt(int ,aes *,mr_unsign32 ,mr_unsign32 ,char *,int);
      extern void FPE_decrypt(int ,aes *,mr_unsign32 ,mr_unsign32 ,char *,int);
      
      extern void  strong_init(csprng *,int,char *,mr_unsign32);   
      extern int   strong_rng(csprng *);
      extern void  strong_bigrand(_MIPT_ csprng *,big,big);
      extern void  strong_bigdig(_MIPT_ csprng *,int,int,big);
      extern void  strong_kill(csprng *);
      
      /* special modular multipliers */
      
      extern void  comba_mult(big,big,big);
      extern void  comba_square(big,big);
      extern void  comba_redc(_MIPT_ big,big);
      extern void  comba_modadd(_MIPT_ big,big,big);
      extern void  comba_modsub(_MIPT_ big,big,big);
      extern void  comba_double_modadd(_MIPT_ big,big,big);
      extern void  comba_double_modsub(_MIPT_ big,big,big);
      extern void  comba_negate(_MIPT_ big,big);
      extern void  comba_add(big,big,big);
      extern void  comba_sub(big,big,big);
      extern void  comba_double_add(big,big,big);
      extern void  comba_double_sub(big,big,big);
      
      extern void  comba_mult2(_MIPT_ big,big,big);
      
      extern void  fastmodmult(_MIPT_ big,big,big);
      extern void  fastmodsquare(_MIPT_ big,big);   
      
      extern void  kcm_mul(_MIPT_ big,big,big);
      extern void  kcm_sqr(_MIPT_ big,big); 
      extern void  kcm_redc(_MIPT_ big,big); 
      
      extern void  kcm_multiply(_MIPT_ int,big,big,big);
      extern void  kcm_square(_MIPT_ int,big,big);
      extern BOOL  kcm_top(_MIPT_ int,big,big,big);
      
      /* elliptic curve stuff */
      
      extern BOOL point_at_infinity(epoint *);
      
      extern void mr_jsf(_MIPT_ big,big,big,big,big,big);
      
      extern void ecurve_init(_MIPT_ big,big,big,int);
      extern int  ecurve_add(_MIPT_ epoint *,epoint *);
      extern int  ecurve_sub(_MIPT_ epoint *,epoint *);
      extern void ecurve_double_add(_MIPT_ epoint *,epoint *,epoint *,epoint *,big *,big *);
      extern void ecurve_multi_add(_MIPT_ int,epoint **,epoint **);
      extern void ecurve_double(_MIPT_ epoint*);
      extern int  ecurve_mult(_MIPT_ big,epoint *,epoint *);
      extern void ecurve_mult2(_MIPT_ big,epoint *,big,epoint *,epoint *);
      extern void ecurve_multn(_MIPT_ int,big *,epoint**,epoint *);
      
      extern BOOL epoint_x(_MIPT_ big);
      extern BOOL epoint_set(_MIPT_ big,big,int,epoint*);
      extern int  epoint_get(_MIPT_ epoint*,big,big);
      extern void epoint_getxyz(_MIPT_ epoint *,big,big,big);
      extern BOOL epoint_norm(_MIPT_ epoint *);
      extern BOOL epoint_multi_norm(_MIPT_ int,big *,epoint **);  
      extern void epoint_free(epoint *);
      extern void epoint_copy(epoint *,epoint *);
      extern BOOL epoint_comp(_MIPT_ epoint *,epoint *);
      extern void epoint_negate(_MIPT_ epoint *);
      
      extern BOOL ecurve2_init(_MIPT_ int,int,int,int,big,big,BOOL,int);
      extern big  ecurve2_add(_MIPT_ epoint *,epoint *);
      extern big  ecurve2_sub(_MIPT_ epoint *,epoint *);
      extern void ecurve2_multi_add(_MIPT_ int,epoint **,epoint **);
      extern void ecurve2_mult(_MIPT_ big,epoint *,epoint *);
      extern void ecurve2_mult2(_MIPT_ big,epoint *,big,epoint *,epoint *);
      extern void ecurve2_multn(_MIPT_ int,big *,epoint**,epoint *);
      
      extern epoint* epoint2_init(_MIPTO_ );
      extern BOOL epoint2_set(_MIPT_ big,big,int,epoint*);
      extern int  epoint2_get(_MIPT_ epoint*,big,big);
      extern void epoint2_getxyz(_MIPT_ epoint *,big,big,big);
      extern int  epoint2_norm(_MIPT_ epoint *);
      extern void epoint2_free(epoint *);
      extern void epoint2_copy(epoint *,epoint *);
      extern BOOL epoint2_comp(_MIPT_ epoint *,epoint *);
      extern void epoint2_negate(_MIPT_ epoint *);
      
      /* GF(2) stuff */
      
      extern BOOL prepare_basis(_MIPT_ int,int,int,int,BOOL);
      extern int parity2(big);
      extern BOOL multi_inverse2(_MIPT_ int,big *,big *);
      extern void add2(big,big,big);
      extern void incr2(big,int,big);
      extern void reduce2(_MIPT_ big,big);
      extern void multiply2(_MIPT_ big,big,big);
      extern void modmult2(_MIPT_ big,big,big);
      extern void modsquare2(_MIPT_ big,big);
      extern void power2(_MIPT_ big,int,big);
      extern void sqroot2(_MIPT_ big,big);
      extern void halftrace2(_MIPT_ big,big);
      extern BOOL quad2(_MIPT_ big,big);
      extern BOOL inverse2(_MIPT_ big,big);
      extern void karmul2(int,mr_small *,mr_small *,mr_small *,mr_small *);
      extern void karmul2_poly(_MIPT_ int,big *,big *,big *,big *);
      extern void karmul2_poly_upper(_MIPT_ int,big *,big *,big *,big *);
      extern void gf2m_dotprod(_MIPT_ int,big *,big *,big);
      extern int  trace2(_MIPT_ big);
      extern void rand2(_MIPT_ big);
      extern void gcd2(_MIPT_ big,big,big);
      extern int degree2(big);
      
      /* zzn2 stuff */
      
      extern BOOL zzn2_iszero(zzn2 *);
      extern BOOL zzn2_isunity(_MIPT_ zzn2 *);
      extern void zzn2_from_int(_MIPT_ int,zzn2 *);
      extern void zzn2_from_ints(_MIPT_ int,int,zzn2 *);
      extern void zzn2_copy(zzn2 *,zzn2 *);
      extern void zzn2_zero(zzn2 *);
      extern void zzn2_negate(_MIPT_ zzn2 *,zzn2 *);
      extern void zzn2_conj(_MIPT_ zzn2 *,zzn2 *);
      extern void zzn2_add(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
      extern void zzn2_sub(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
      extern void zzn2_smul(_MIPT_ zzn2 *,big,zzn2 *);
      extern void zzn2_mul(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
      extern void zzn2_sqr(_MIPT_ zzn2 *,zzn2 *);
      extern void zzn2_inv(_MIPT_ zzn2 *);
      extern void zzn2_timesi(_MIPT_ zzn2 *);
      extern void zzn2_powl(_MIPT_ zzn2 *,big,zzn2 *);
      extern void zzn2_from_zzns(big,big,zzn2 *);
      extern void zzn2_from_bigs(_MIPT_ big,big,zzn2 *);
      extern void zzn2_from_zzn(big,zzn2 *);
      extern void zzn2_from_big(_MIPT_ big, zzn2 *);
      extern void zzn2_sadd(_MIPT_ zzn2 *,big,zzn2 *);
      extern void zzn2_ssub(_MIPT_ zzn2 *,big,zzn2 *);
      extern void zzn2_div2(_MIPT_ zzn2 *);
      extern void zzn2_div3(_MIPT_ zzn2 *);
      extern void zzn2_div5(_MIPT_ zzn2 *);
      extern void zzn2_imul(_MIPT_ zzn2 *,int,zzn2 *);
      extern BOOL zzn2_compare(zzn2 *,zzn2 *);
      extern void zzn2_txx(_MIPT_ zzn2 *);
      extern void zzn2_txd(_MIPT_ zzn2 *);
      extern BOOL zzn2_sqrt(_MIPT_ zzn2 *,zzn2 *);
      extern BOOL zzn2_qr(_MIPT_ zzn2 *);
      extern BOOL zzn2_multi_inverse(_MIPT_ int,zzn2 *,zzn2 *);
      
      
      /* zzn3 stuff */
      
      extern void zzn3_set(_MIPT_ int,big);
      extern BOOL zzn3_iszero(zzn3 *);
      extern BOOL zzn3_isunity(_MIPT_ zzn3 *);
      extern void zzn3_from_int(_MIPT_ int,zzn3 *);
      extern void zzn3_from_ints(_MIPT_ int,int,int,zzn3 *);
      extern void zzn3_copy(zzn3 *,zzn3 *);
      extern void zzn3_zero(zzn3 *);
      extern void zzn3_negate(_MIPT_ zzn3 *,zzn3 *);
      extern void zzn3_powq(_MIPT_ zzn3 *,zzn3 *);
      extern void zzn3_add(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
      extern void zzn3_sub(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
      extern void zzn3_smul(_MIPT_ zzn3 *,big,zzn3 *);
      extern void zzn3_mul(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
      extern void zzn3_inv(_MIPT_ zzn3 *);
      extern void zzn3_timesi(_MIPT_ zzn3 *);
      extern void zzn3_timesi2(_MIPT_ zzn3 *);
      extern void zzn3_powl(_MIPT_ zzn3 *,big,zzn3 *);
      extern void zzn3_from_zzns(big,big,big,zzn3 *);
      extern void zzn3_from_bigs(_MIPT_ big,big,big,zzn3 *);
      extern void zzn3_from_zzn(big,zzn3 *);
      extern void zzn3_from_zzn_1(big,zzn3 *);
      extern void zzn3_from_zzn_2(big,zzn3 *);
      extern void zzn3_from_big(_MIPT_ big, zzn3 *);
      extern void zzn3_sadd(_MIPT_ zzn3 *,big,zzn3 *);
      extern void zzn3_ssub(_MIPT_ zzn3 *,big,zzn3 *);
      extern void zzn3_div2(_MIPT_ zzn3 *);
      extern void zzn3_imul(_MIPT_ zzn3 *,int,zzn3 *);
      extern BOOL zzn3_compare(zzn3 *,zzn3 *);
      
      /* zzn4 stuff */
      
      extern BOOL zzn4_iszero(zzn4 *);
      extern BOOL zzn4_isunity(_MIPT_ zzn4 *);
      extern void zzn4_from_int(_MIPT_ int,zzn4 *);
      extern void zzn4_copy(zzn4 *,zzn4 *);
      extern void zzn4_zero(zzn4 *);
      extern void zzn4_negate(_MIPT_ zzn4 *,zzn4 *);
      extern void zzn4_powq(_MIPT_ zzn2 *,zzn4 *);
      extern void zzn4_add(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
      extern void zzn4_sub(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
      extern void zzn4_smul(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
      extern void zzn4_sqr(_MIPT_ zzn4 *,zzn4 *);
      extern void zzn4_mul(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
      extern void zzn4_inv(_MIPT_ zzn4 *);
      extern void zzn4_timesi(_MIPT_ zzn4 *);
      extern void zzn4_tx(_MIPT_ zzn4 *);
      extern void zzn4_from_zzn2s(zzn2 *,zzn2 *,zzn4 *);
      extern void zzn4_from_zzn2(zzn2 *,zzn4 *);
      extern void zzn4_from_zzn2h(zzn2 *,zzn4 *);
      extern void zzn4_from_zzn(big,zzn4 *);
      extern void zzn4_from_big(_MIPT_ big , zzn4 *);
      extern void zzn4_sadd(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
      extern void zzn4_ssub(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
      extern void zzn4_div2(_MIPT_ zzn4 *);
      extern void zzn4_conj(_MIPT_ zzn4 *,zzn4 *);
      extern void zzn4_imul(_MIPT_ zzn4 *,int,zzn4 *);
      extern void zzn4_lmul(_MIPT_ zzn4 *,big,zzn4 *);
      extern BOOL zzn4_compare(zzn4 *,zzn4 *);
      
      /* ecn2 stuff */
      
      extern BOOL ecn2_iszero(ecn2 *);
      extern void ecn2_copy(ecn2 *,ecn2 *);
      extern void ecn2_zero(ecn2 *);
      extern BOOL ecn2_compare(_MIPT_ ecn2 *,ecn2 *);
      extern void ecn2_norm(_MIPT_ ecn2 *);
      extern void ecn2_get(_MIPT_ ecn2 *,zzn2 *,zzn2 *,zzn2 *);
      extern void ecn2_getxy(ecn2 *,zzn2 *,zzn2 *);
      extern void ecn2_getx(ecn2 *,zzn2 *);
      extern void ecn2_getz(_MIPT_ ecn2 *,zzn2 *);
      extern void ecn2_rhs(_MIPT_ zzn2 *,zzn2 *);
      extern BOOL ecn2_set(_MIPT_ zzn2 *,zzn2 *,ecn2 *);
      extern BOOL ecn2_setx(_MIPT_ zzn2 *,ecn2 *);
      extern void ecn2_setxyz(_MIPT_ zzn2 *,zzn2 *,zzn2 *,ecn2 *);
      extern void ecn2_negate(_MIPT_ ecn2 *,ecn2 *);
      extern BOOL ecn2_add3(_MIPT_ ecn2 *,ecn2 *,zzn2 *,zzn2 *,zzn2 *);
      extern BOOL ecn2_add2(_MIPT_ ecn2 *,ecn2 *,zzn2 *,zzn2 *);
      extern BOOL ecn2_add1(_MIPT_ ecn2 *,ecn2 *,zzn2 *);
      extern BOOL ecn2_add(_MIPT_ ecn2 *,ecn2 *);
      extern BOOL ecn2_sub(_MIPT_ ecn2 *,ecn2 *);
      extern BOOL ecn2_add_sub(_MIPT_ ecn2 *,ecn2 *,ecn2 *,ecn2 *);
      extern int ecn2_mul2_jsf(_MIPT_ big,ecn2 *,big,ecn2 *,ecn2 *);
      extern int ecn2_mul(_MIPT_ big,ecn2 *);
      extern void ecn2_psi(_MIPT_ zzn2 *,ecn2 *);
      extern BOOL ecn2_multi_norm(_MIPT_ int ,zzn2 *,ecn2 *);
      extern int ecn2_mul4_gls_v(_MIPT_ big *,int,ecn2 *,big *,ecn2 *,zzn2 *,ecn2 *);
      extern int ecn2_muln_engine(_MIPT_ int,int,int,int,big *,big *,big *,big *,ecn2 *,ecn2 *,ecn2 *);
      extern void ecn2_precomp_gls(_MIPT_ int,BOOL,ecn2 *,zzn2 *,ecn2 *);
      extern int ecn2_mul2_gls(_MIPT_ big *,ecn2 *,zzn2 *,ecn2 *);
      extern void ecn2_precomp(_MIPT_ int,BOOL,ecn2 *,ecn2 *);
      extern int ecn2_mul2(_MIPT_ big,int,ecn2 *,big,ecn2 *,ecn2 *);
      #ifndef MR_STATIC
      extern BOOL ecn2_brick_init(_MIPT_ ebrick *,zzn2 *,zzn2 *,big,big,big,int,int);
      extern void ecn2_brick_end(ebrick *);
      #else
      extern void ebrick_init(ebrick *,const mr_small *,big,big,big,int,int);
      #endif
      extern void ecn2_mul_brick_gls(_MIPT_ ebrick *B,big *,zzn2 *,zzn2 *,zzn2 *);
      extern void ecn2_multn(_MIPT_ int,big *,ecn2 *,ecn2 *);
      extern void ecn2_mult4(_MIPT_ big *,ecn2 *,ecn2 *);
      /* Group 3 - Floating-slash routines      */
      
      #ifdef MR_FLASH
      extern void  fpack(_MIPT_ big,big,flash);
      extern void  numer(_MIPT_ flash,big);    
      extern void  denom(_MIPT_ flash,big);    
      extern BOOL  fit(big,big,int);    
      extern void  build(_MIPT_ flash,int (*)(_MIPT_ big,int));
      extern void  mround(_MIPT_ big,big,flash);         
      extern void  flop(_MIPT_ flash,flash,int *,flash);
      extern void  fmul(_MIPT_ flash,flash,flash);      
      extern void  fdiv(_MIPT_ flash,flash,flash);      
      extern void  fadd(_MIPT_ flash,flash,flash);      
      extern void  fsub(_MIPT_ flash,flash,flash);      
      extern int   fcomp(_MIPT_ flash,flash);           
      extern void  fconv(_MIPT_ int,int,flash);         
      extern void  frecip(_MIPT_ flash,flash);          
      extern void  ftrunc(_MIPT_ flash,big,flash);      
      extern void  fmodulo(_MIPT_ flash,flash,flash);
      extern void  fpmul(_MIPT_ flash,int,int,flash);   
      extern void  fincr(_MIPT_ flash,int,int,flash);   
      extern void  dconv(_MIPT_ double,flash);          
      extern double fdsize(_MIPT_ flash);
      extern void  frand(_MIPT_ flash);
      
      /* Group 4 - Advanced Flash routines */ 
      
      extern void  fpower(_MIPT_ flash,int,flash);
      extern BOOL  froot(_MIPT_ flash,int,flash); 
      extern void  fpi(_MIPT_ flash);             
      extern void  fexp(_MIPT_ flash,flash);      
      extern void  flog(_MIPT_ flash,flash);      
      extern void  fpowf(_MIPT_ flash,flash,flash);
      extern void  ftan(_MIPT_ flash,flash); 
      extern void  fatan(_MIPT_ flash,flash);
      extern void  fsin(_MIPT_ flash,flash); 
      extern void  fasin(_MIPT_ flash,flash);
      extern void  fcos(_MIPT_ flash,flash);  
      extern void  facos(_MIPT_ flash,flash); 
      extern void  ftanh(_MIPT_ flash,flash); 
      extern void  fatanh(_MIPT_ flash,flash);
      extern void  fsinh(_MIPT_ flash,flash); 
      extern void  fasinh(_MIPT_ flash,flash);
      extern void  fcosh(_MIPT_ flash,flash); 
      extern void  facosh(_MIPT_ flash,flash);
      #endif
      
      
      /* Test predefined Macros to determine compiler type, and hopefully 
         selectively use fast in-line assembler (or other compiler specific
         optimisations. Note I am unsure of Microsoft version numbers. So I 
         suspect are Microsoft.
      
         Note: It seems to be impossible to get the 16-bit Microsoft compiler
         to allow inline 32-bit op-codes. So I suspect that INLINE_ASM == 2 will
         never work with it. Pity. 
      
      #define INLINE_ASM 1    -> generates 8086 inline assembly
      #define INLINE_ASM 2    -> generates mixed 8086 & 80386 inline assembly,
                                 so you can get some benefit while running in a 
                                 16-bit environment on 32-bit hardware (DOS, Windows
                                 3.1...)
      #define INLINE_ASM 3    -> generate true 80386 inline assembly - (Using DOS 
                                 extender, Windows '95/Windows NT)
                                 Actually optimised for Pentium
      
      #define INLINE_ASM 4    -> 80386 code in the GNU style (for (DJGPP)
      
      Small, medium, compact and large memory models are supported for the
      first two of the above.
                              
      */
      
      /* To allow for inline assembly */
      
      #ifdef __GNUC__ 
          #define ASM __asm__ __volatile__
      #endif
      
      #ifdef __TURBOC__ 
          #define ASM asm
      #endif
      
      #ifdef _MSC_VER
          #define ASM _asm
      #endif
      
      #ifndef MR_NOASM
      
      /* Win64 - inline the time critical function */
      #ifndef MR_NO_INTRINSICS
      	#ifdef MR_WIN64
      		#define muldvd(a,b,c,rp) (*(rp)=_umul128((a),(b),&(tm)),*(rp)+=(c),tm+=(*(rp)<(c)),tm)
      		#define muldvd2(a,b,c,rp) (tr=_umul128((a),(b),&(tm)),tr+=(*(c)),tm+=(tr<(*(c))),tr+=(*(rp)),tm+=(tr<(*(rp))),*(rp)=tr,*(c)=tm)
      	#endif
      
      /* Itanium - inline the time-critical functions */
      
          #ifdef MR_ITANIUM
              #define muldvd(a,b,c,rp)  (tm=_m64_xmahu((a),(b),(c)),*(rp)=_m64_xmalu((a),(b),(c)),tm)
              #define muldvd2(a,b,c,rp) (tm=_m64_xmalu((a),(b),(*(c))),*(c)=_m64_xmahu((a),(b),(*(c))),tm+=*(rp),*(c)+=(tm<*(rp)),*(rp)=tm)
          #endif
      #endif
      /*
      
      SSE2 code. Works as for itanium - but in fact it is slower than the regular code so not recommended
      Would require a call to emmintrin.h or xmmintrin.h, and an __m128i variable tm to be declared in effected 
      functions. But it works!
      
      	#define muldvd(a,b,c,rp)  (tm=_mm_add_epi64(_mm_mul_epu32(_mm_cvtsi32_si128((a)),_mm_cvtsi32_si128((b))),_mm_cvtsi32_si128((c))),*(rp)=_mm_cvtsi128_si32(tm),_mm_cvtsi128_si32(_mm_shuffle_epi32(tm,_MM_SHUFFLE(3,2,0,1))) )
      	#define muldvd2(a,b,c,rp) (tm=_mm_add_epi64(_mm_add_epi64(_mm_mul_epu32(_mm_cvtsi32_si128((a)),_mm_cvtsi32_si128((b))),_mm_cvtsi32_si128(*(c))),_mm_cvtsi32_si128(*(rp))),*(rp)=_mm_cvtsi128_si32(tm),*(c)=_mm_cvtsi128_si32( _mm_shuffle_epi32(tm,_MM_SHUFFLE(3,2,0,1))  )
      */
      
      /* Borland C/Turbo C */
      
          #ifdef __TURBOC__ 
          #ifndef __HUGE__
              #if defined(__COMPACT__) || defined(__LARGE__)
                  #define MR_LMM
              #endif
      
              #if MIRACL==16
                  #define INLINE_ASM 1
              #endif
      
              #if __TURBOC__>=0x410
                  #if MIRACL==32
      #if defined(__SMALL__) || defined(__MEDIUM__) || defined(__LARGE__) || defined(__COMPACT__)
                          #define INLINE_ASM 2
                      #else
                          #define INLINE_ASM 3
                      #endif
                  #endif
              #endif
          #endif
          #endif
      
      /* Microsoft C */
      
          #ifdef _MSC_VER
          #ifndef M_I86HM        
              #if defined(M_I86CM) || defined(M_I86LM)
                  #define MR_LMM
              #endif
              #if _MSC_VER>=600
                  #if _MSC_VER<1200
                      #if MIRACL==16
                          #define INLINE_ASM 1
                      #endif
                  #endif
              #endif
              #if _MSC_VER>=1000
      			#if _MSC_VER<1500
      				#if MIRACL==32
      					#define INLINE_ASM 3
      				#endif
      			#endif
              #endif     
          #endif       
          #endif
      
      /* DJGPP GNU C */
      
          #ifdef __GNUC__
          #ifdef i386
              #if MIRACL==32
                  #define INLINE_ASM 4
              #endif
          #endif
          #endif
      
      #endif
      
      
      
      /* 
         The following contribution is from Tielo Jongmans, Netherlands
         These inline assembler routines are suitable for Watcom 10.0 and up 
      
         Added into miracl.h.  Notice the override of the original declarations 
         of these routines, which should be removed.
      
         The following pragma is optional, it is dangerous, but it saves a 
         calling sequence
      */
      
      /*
      
      #pragma off (check_stack);
      
      extern unsigned int muldiv(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int *);
      #pragma aux muldiv=                 \
             "mul     edx"                \
             "add     eax,ebx"            \
             "adc     edx,0"              \
             "div     ecx"                \
             "mov     [esi],edx"          \
          parm [eax] [edx] [ebx] [ecx] [esi]   \
          value [eax]                     \
          modify [eax edx];
      
      extern unsigned int muldvm(unsigned int, unsigned int, unsigned int, unsigned int *);
      #pragma aux muldvm=                 \
              "div     ebx"               \
              "mov     [ecx],edx"         \
          parm [edx] [eax] [ebx] [ecx]    \
          value [eax]                     \
          modify [eax edx];
      
      extern unsigned int muldvd(unsigned int, unsigned int, unsigned int, unsigned int *);
      #pragma aux muldvd=                 \
              "mul     edx"               \
              "add     eax,ebx"           \
              "adc     edx,0"             \
              "mov     [ecx],eax"         \
              "mov     eax,edx"           \
          parm [eax] [edx] [ebx] [ecx]    \
          value [eax]                     \
          modify [eax edx];
      
      */
      
      
      #endif
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat mirdef.h
      /* 
       *   MIRACL compiler/hardware definitions - mirdef.h
       *   This version suitable for use with most 32-bit computers
       *   e.g. 80386+ PC, VAX, ARM etc. Assembly language versions of muldiv,
       *   muldvm, muldvd and muldvd2 will be necessary. See mrmuldv.any 
       *
       *   Also suitable for DJGPP GNU C Compiler
       *   ... but change __int64 to long long
       */
      
      #define MIRACL 32
      #define MR_LITTLE_ENDIAN    /* This may need to be changed        */
      #define mr_utype int
                                  /* the underlying type is usually int *
                                   * but see mrmuldv.any                */
      #define mr_unsign32 unsigned int
                                  /* 32 bit unsigned type               */
      #define MR_IBITS      32    /* bits in int  */
      #define MR_LBITS      32    /* bits in long */
      #define MR_FLASH      52      
                                  /* delete this definition if integer  *
                                   * only version of MIRACL required    */
                                  /* Number of bits per double mantissa */
      
      #define mr_dltype __int64   /* ... or long long for Unix/Linux */
      #define mr_unsign64 unsigned __int64
      
      #define MAXBASE ((mr_small)1<<(MIRACL-1))
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat SM2_ENC.c
      
      #include "miracl.h"
      #include "mirdef.h"
      #include "SM2_ENC.h"
      #include "kdf.h"
      
      #pragma comment(lib,"mymiracl.lib")
      
      
      unsigned char SM2_p[32] = { 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
      0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF };
      unsigned char SM2_a[32] = { 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
      0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFC };
      unsigned char SM2_b[32] = { 0x28,0xE9,0xFA,0x9E,0x9D,0x9F,0x5E,0x34,0x4D,0x5A,0x9E,0x4B,0xCF,0x65,0x09,0xA7,
      0xF3,0x97,0x89,0xF5,0x15,0xAB,0x8F,0x92,0xDD,0xBC,0xBD,0x41,0x4D,0x94,0x0E,0x93 };
      unsigned char SM2_n[32] = { 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
      0x72,0x03,0xDF,0x6B,0x21,0xC6,0x05,0x2B,0x53,0xBB,0xF4,0x09,0x39,0xD5,0x41,0x23 };
      unsigned char SM2_Gx[32] = { 0x32,0xC4,0xAE,0x2C,0x1F,0x19,0x81,0x19,0x5F,0x99,0x04,0x46,0x6A,0x39,0xC9,0x94,
      0x8F,0xE3,0x0B,0xBF,0xF2,0x66,0x0B,0xE1,0x71,0x5A,0x45,0x89,0x33,0x4C,0x74,0xC7 };
      unsigned char SM2_Gy[32] = { 0xBC,0x37,0x36,0xA2,0xF4,0xF6,0x77,0x9C,0x59,0xBD,0xCE,0xE3,0x6B,0x69,0x21,0x53,
      0xD0,0xA9,0x87,0x7C,0xC6,0x2A,0x47,0x40,0x02,0xDF,0x32,0xE5,0x21,0x39,0xF0,0xA0 };
      unsigned char SM2_h[32] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
      0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01 };
      
      
      /****************************************************************
      Function: Test_Point
      Description: test if the given point is on SM2 curve
      Calls:
      Called By: SM2_Decrypt, Test_PubKey
      Input: point
      Output: null
      Return: 0: sucess
      3: not a valid point on curve
      Others:
      ****************************************************************/
      int Test_Point(epoint* point)
      {
      	big x, y, x_3, tmp;
      	x = mirvar(0);
      	y = mirvar(0);
      	x_3 = mirvar(0);
      	tmp = mirvar(0);
      	//test if y^2=x^3+ax+b
      	epoint_get(point, x, y);
      	power(x, 3, para_p, x_3); //x_3=x^3 mod p
      	multiply(x, para_a, x); //x=a*x
      	divide(x, para_p, tmp); //x=a*x mod p , tmp=a*x/p
      	add(x_3, x, x); //x=x^3+ax
      	add(x, para_b, x); //x=x^3+ax+b
      	divide(x, para_p, tmp); //x=x^3+ax+b mod p
      	power(y, 2, para_p, y); //y=y^2 mod p
      	if (mr_compare(x, y) != 0)
      		return ERR_NOT_VALID_POINT;
      	else
      		return 0;
      }
      /****************************************************************
      Function: SM2_TestPubKey
      Description: test if the given point is valid
      Calls:
      Called By: SM2_Decrypt
      Input: pubKey //a point
      Output: null
      Return: 0: sucess
      1: a point at infinity
      2: X or Y coordinate is beyond Fq
      3: not a valid point on curve
      4: not a point of order n
      Others:
      ****************************************************************/
      int Test_PubKey(epoint *pubKey)
      {
      	big x, y, x_3, tmp;
      	epoint *nP;
      	x = mirvar(0);
      	y = mirvar(0);
      	x_3 = mirvar(0);
      	tmp = mirvar(0);
      	nP = epoint_init();
      	//test if the pubKey is the point at infinity
      	if (point_at_infinity(pubKey))// if pubKey is point at infinity, return error;
      		return ERR_INFINITY_POINT;
      	//test if x<p and y<p both hold
      	epoint_get(pubKey, x, y);
      	if ((mr_compare(x, para_p) != -1) || (mr_compare(y, para_p) != -1))
      		return ERR_NOT_VALID_ELEMENT;
      	if (Test_Point(pubKey) != 0)
      		return ERR_NOT_VALID_POINT;
      	//test if the order of pubKey is equal to n
      	ecurve_mult(para_n, pubKey, nP); // nP=[n]P
      	if (!point_at_infinity(nP)) // if np is point NOT at infinity, return error;
      		return ERR_ORDER;
      	return 0;
      }
      /****************************************************************
      Function: Test_Null
      Description: test if the given array is all zero
      Calls:
      Called By: SM2_Encrypt
      Input: array[len]
      len //byte len of the array
      Output: null
      Return: 0: the given array is not all zero
      1: the given array is all zero
      Others:
      ****************************************************************/
      int Test_Null(unsigned char array[], int len)
      {
      	int i = 0;
      	for (i = 0; i < len; i++)
      	{
      		if (array[i] != 0x00)
      			return 0;
      	}
      	return 1;
      }
      /****************************************************************
      Function: SM2_Init
      Description: Initiate SM2 curve
      Calls: MIRACL functions
      Called By:
      Input: null
      Output: null
      Return: 0: sucess;
      7: paremeter error;
      4: the given point G is not a point of order n
      Others:
      ****************************************************************/
      int SM2_Init()
      {
      	epoint *nG;
      	para_p = mirvar(0);
      	para_a = mirvar(0);
      	para_b = mirvar(0);
      	para_n = mirvar(0);
      	para_Gx = mirvar(0);
      	para_Gy = mirvar(0);
      	para_h = mirvar(0);
      	G = epoint_init();
      	nG = epoint_init();
      	bytes_to_big(SM2_NUMWORD, SM2_p, para_p);
      	bytes_to_big(SM2_NUMWORD, SM2_a, para_a);
      	bytes_to_big(SM2_NUMWORD, SM2_b, para_b);
      	bytes_to_big(SM2_NUMWORD, SM2_n, para_n);
      	bytes_to_big(SM2_NUMWORD, SM2_Gx, para_Gx);
      	bytes_to_big(SM2_NUMWORD, SM2_Gy, para_Gy);
      	bytes_to_big(SM2_NUMWORD, SM2_h, para_h);
      	ecurve_init(para_a, para_b, para_p, MR_PROJECTIVE);//Initialises GF(p) elliptic curve.
      	//MR_PROJECTIVE specifying projective coordinates
      		if (!epoint_set(para_Gx, para_Gy, 0, G))//initialise point G
      		{
      			return ERR_ECURVE_INIT;
      		}
      	ecurve_mult(para_n, G, nG);
      	if (!point_at_infinity(nG)) //test if the order of the point is n
      	{
      		return ERR_ORDER;
      	}
      	return 0;
      }
      /****************************************************************
      Function: SM2_KeyGeneration
      Description: calculate a pubKey out of a given priKey
      Calls: SM2_TestPubKey
      Called By:
      Input: priKey // a big number lies in[1,n-2]
      Output: pubKey // pubKey=[priKey]G
      Return: 0: sucess
      1: fail
      Others:
      ****************************************************************/
      int SM2_KeyGeneration(big priKey, epoint *pubKey)
      {
      	int i = 0;
      	big x, y;
      	x = mirvar(0);
      	y = mirvar(0);
      	ecurve_mult(priKey, G, pubKey);//?0?0       ?0?9        ?0?7
      	epoint_get(pubKey, x, y);
      	if (Test_PubKey(pubKey) != 0)
      		return 1;
      	else
      		return 0;
      }
      /****************************************************************
      Function: SM2_Encrypt
      Description: SM2 encryption
      Calls: SM2_KDF,Test_null,Test_Point,SM3_init,SM3_process,SM3_done
      Called By:
      Input: randK[SM2_NUMWORD] // a random number K lies in [1,n-1]
      pubKey // public key of the cipher receiver
      M[klen] // original message
      klen // byte len of original message
      Output: C[klen+SM2_NUMWORD*3] // cipher C1||C3||C2
      Return: 0: sucess
      1: S is point at infinity
      5: the KDF output is all zero
      Others:
      ****************************************************************/
      int SM2_Encrypt(unsigned char* randK, epoint *pubKey, unsigned char M[], int klen, unsigned char C[])
      {
      	big C1x, C1y, x2, y2, rand;
      	epoint *C1, *kP, *S;
      	int i = 0;
      	unsigned char x2y2[SM2_NUMWORD * 2] = { 0 };
      	SM3_STATE md;
      	C1x = mirvar(0);
      	C1y = mirvar(0);
      	x2 = mirvar(0);
      	y2 = mirvar(0);
      	rand = mirvar(0);
      	C1 = epoint_init();
      	kP = epoint_init();
      	S = epoint_init();
      	//Step2. calculate C1=[k]G=(rGx,rGy)
      	bytes_to_big(SM2_NUMWORD, randK, rand);
      	ecurve_mult(rand, G, C1); //C1=[k]G
      	epoint_get(C1, C1x, C1y);
      	big_to_bytes(SM2_NUMWORD, C1x, C, 1);
      	big_to_bytes(SM2_NUMWORD, C1y, C + SM2_NUMWORD, 1);
      	//Step3. test if S=[h]pubKey if the point at infinity
      	ecurve_mult(para_h, pubKey, S);
      	if (point_at_infinity(S))// if S is point at infinity, return error;
      		return ERR_INFINITY_POINT;
      	//Step4. calculate [k]PB=(x2,y2)
      	ecurve_mult(rand, pubKey, kP); //kP=[k]P
      	epoint_get(kP, x2, y2);
      	//Step5. KDF(x2||y2,klen)
      	big_to_bytes(SM2_NUMWORD, x2, x2y2, 1);
      	big_to_bytes(SM2_NUMWORD, y2, x2y2 + SM2_NUMWORD, 1);
      	SM3_KDF(x2y2, SM2_NUMWORD * 2, klen, C + SM2_NUMWORD * 3);
      	if (Test_Null(C + SM2_NUMWORD * 3, klen) != 0)
      		return ERR_ARRAY_NULL;
      	//Step6. C2=M^t
      	for (i = 0; i < klen; i++)
      	{
      		C[SM2_NUMWORD * 3 + i] = M[i] ^ C[SM2_NUMWORD * 3 + i];
      	}
      	//Step7. C3=hash(x2,M,y2)
      	SM3_init(&md);
      	SM3_process(&md, x2y2, SM2_NUMWORD);
      	SM3_process(&md, M, klen);
      	SM3_process(&md, x2y2 + SM2_NUMWORD, SM2_NUMWORD);
      	SM3_done(&md, C + SM2_NUMWORD * 2);
      	return 0;
      }
      /****************************************************************
      Function: SM2_Decrypt
      Description: SM2 decryption
      Calls: SM2_KDF,Test_Point,SM3_init,SM3_process,SM3_done
      Called By:
      Input: dB // a big number lies in [1,n-2]
      pubKey // [dB]G
      C[Clen] // cipher C1||C3||C2
      Clen // byte len of cipher
      Output: M[Clen-SM2_NUMWORD*3] // decrypted data
      Return: 0: sucess
      1: S is a point at finity
      3: C1 is not a valid point
      5: KDF output is all zero
      6: C3 does not match
      Others:
      ****************************************************************/
      int SM2_Decrypt(big dB, unsigned char C[], int Clen, unsigned char M[])
      {
      	SM3_STATE md;
      	int i = 0;
      	unsigned char x2y2[SM2_NUMWORD * 2] = { 0 };
      	unsigned char hash[SM2_NUMWORD] = { 0 };
      	big C1x, C1y, x2, y2;
      	epoint *C1, *S, *dBC1;
      	C1x = mirvar(0);
      	C1y = mirvar(0);
      	x2 = mirvar(0);
      	y2 = mirvar(0);
      	C1 = epoint_init();
      	S = epoint_init();
      	dBC1 = epoint_init();
      	//Step1. test if C1 fits the curve
      	bytes_to_big(SM2_NUMWORD, C, C1x);
      	bytes_to_big(SM2_NUMWORD, C + SM2_NUMWORD, C1y);
      	epoint_set(C1x, C1y, 0, C1);
      	i = Test_Point(C1);
      	if (i != 0)
      		return i;
      	//Step2. S=[h]C1 and test if S is the point at infinity
      	ecurve_mult(para_h, C1, S);
      	if (point_at_infinity(S))// if S is point at infinity, return error;
      		return ERR_INFINITY_POINT;
      	//Step3. [dB]C1=(x2,y2)
      	ecurve_mult(dB, C1, dBC1);
      	epoint_get(dBC1, x2, y2);
      	big_to_bytes(SM2_NUMWORD, x2, x2y2, 1);
      	big_to_bytes(SM2_NUMWORD, y2, x2y2 + SM2_NUMWORD, 1);
      	//Step4. t=KDF(x2||y2,klen)
      	SM3_KDF(x2y2, SM2_NUMWORD * 2, Clen - SM2_NUMWORD * 3, M);
      	if (Test_Null(M, Clen - SM2_NUMWORD * 3) != 0)
      		return ERR_ARRAY_NULL;
      	//Step5. M=C2^t
      	for (i = 0; i < Clen - SM2_NUMWORD * 3; i++)
      		M[i] = M[i] ^ C[SM2_NUMWORD * 3 + i];
      	//Step6. hash(x2,m,y2)
      	SM3_init(&md);
      	SM3_process(&md, x2y2, SM2_NUMWORD);
      	SM3_process(&md, M, Clen - SM2_NUMWORD * 3);
      	SM3_process(&md, x2y2 + SM2_NUMWORD, SM2_NUMWORD);
      	SM3_done(&md, hash);
      	if (memcmp(hash, C + SM2_NUMWORD * 2, SM2_NUMWORD) != 0)
      		return ERR_C3_MATCH;
      	else
      		return 0;
      }
      /****************************************************************
      Function: SM2_ENC_SelfTest
      Description: test whether the SM2 calculation is correct by comparing the result with the standard data
      Calls: SM2_init,SM2_ENC,SM2_DEC
      Called By:
      Input: NULL
      Output: NULL
      Return: 0: sucess
      1: S is a point at finity
      2: X or Y coordinate is beyond Fq
      3: not a valid point on curve
      4: the given point G is not a point of order n
      5: KDF output is all zero
      6: C3 does not match
      8: public key generation error
      9: SM2 encryption error
      a: SM2 decryption error
      Others:
      ****************************************************************/
      int SM2_ENC_SelfTest()
      {
      	int tmp = 0, i = 0;
      	unsigned char Cipher[115] = { 0 };
      	unsigned char M[19] = { 0 };
      	unsigned char kGxy[SM2_NUMWORD * 2] = { 0 };
      	big ks, x, y;
      	epoint *kG;
      	//standard data
      	unsigned char std_priKey[32] = { 0x39,0x45,0x20,0x8F,0x7B,0x21,0x44,0xB1,0x3F,0x36,0xE3,0x8A,0xC6,0xD3,0x9F,0x95,
      	0x88,0x93,0x93,0x69,0x28,0x60,0xB5,0x1A,0x42,0xFB,0x81,0xEF,0x4D,0xF7,0xC5,0xB8 };
      	unsigned char std_pubKey[64] = { 0x09,0xF9,0xDF,0x31,0x1E,0x54,0x21,0xA1,0x50,0xDD,0x7D,0x16,0x1E,0x4B,0xC5,0xC6,
      	0x72,0x17,0x9F,0xAD,0x18,0x33,0xFC,0x07,0x6B,0xB0,0x8F,0xF3,0x56,0xF3,0x50,0x20,
      	0xCC,0xEA,0x49,0x0C,0xE2,0x67,0x75,0xA5,0x2D,0xC6,0xEA,0x71,0x8C,0xC1,0xAA,0x60,
      	0x0A,0xED,0x05,0xFB,0xF3,0x5E,0x08,0x4A,0x66,0x32,0xF6,0x07,0x2D,0xA9,0xAD,0x13 };
      	unsigned char std_rand[32] = { 0x59,0x27,0x6E,0x27,0xD5,0x06,0x86,0x1A,0x16,0x68,0x0F,0x3A,0xD9,0xC0,0x2D,0xCC,
      	0xEF,0x3C,0xC1,0xFA,0x3C,0xDB,0xE4,0xCE,0x6D,0x54,0xB8,0x0D,0xEA,0xC1,0xBC,0x21 };
      	unsigned char std_Message[19] = { 0x65,0x6E,0x63,0x72,0x79,0x70,0x74,0x69,0x6F,0x6E,0x20,0x73,0x74,0x61,0x6E,
      	0x64,0x61,0x72,0x64 };
      	unsigned char std_Cipher[115] = { 0x04,0xEB,0xFC,0x71,0x8E,0x8D,0x17,0x98,0x62,0x04,0x32,0x26,0x8E,0x77,0xFE,0xB6,
      	0x41,0x5E,0x2E,0xDE,0x0E,0x07,0x3C,0x0F,0x4F,0x64,0x0E,0xCD,0x2E,0x14,0x9A,0x73,
      	0xE8,0x58,0xF9,0xD8,0x1E,0x54,0x30,0xA5,0x7B,0x36,0xDA,0xAB,0x8F,0x95,0x0A,0x3C,
      	0x64,0xE6,0xEE,0x6A,0x63,0x09,0x4D,0x99,0x28,0x3A,0xFF,0x76,0x7E,0x12,0x4D,0xF0,
      	0x59,0x98,0x3C,0x18,0xF8,0x09,0xE2,0x62,0x92,0x3C,0x53,0xAE,0xC2,0x95,0xD3,0x03,
      	0x83,0xB5,0x4E,0x39,0xD6,0x09,0xD1,0x60,0xAF,0xCB,0x19,0x08,0xD0,0xBD,0x87,0x66,
      	0x21,0x88,0x6C,0xA9,0x89,0xCA,0x9C,0x7D,0x58,0x08,0x73,0x07,0xCA,0x93,0x09,0x2D,0x65,0x1E,0xFA };
      	mip = mirsys(1000, 16);
      	mip->IOBASE = 16;
      	x = mirvar(0);
      	y = mirvar(0);
      	ks = mirvar(0);
      	kG = epoint_init();
      	bytes_to_big(32, std_priKey, ks); //ks is the standard private key
      	//initiate SM2 curve
      	SM2_Init();
      	//generate key pair
      	tmp = SM2_KeyGeneration(ks, kG);
      	if (tmp != 0)
      		return tmp;
      	epoint_get(kG, x, y);
      	big_to_bytes(SM2_NUMWORD, x, kGxy, 1);
      	big_to_bytes(SM2_NUMWORD, y, kGxy + SM2_NUMWORD, 1);
      	if (memcmp(kGxy, std_pubKey, SM2_NUMWORD * 2) != 0)
      		return ERR_SELFTEST_KG;
      	puts("原文:");
      	for (i = 0; i < 19; i++)
      	{
      		if (i > 0 && i % 8 == 0) printf("\n");
      		printf("0x%x,", std_Message[i]);
      	}
      	//encrypt data and compare the result with the standard data
      	tmp = SM2_Encrypt(std_rand, kG, std_Message, 19, Cipher);
      	if (tmp != 0)
      		return tmp;
      	if (memcmp(Cipher, std_Cipher, 19 + SM2_NUMWORD * 3) != 0)
      		return ERR_SELFTEST_ENC;
      
      
      	puts("\n\n密文:");
      	for (i = 0; i < 19 + SM2_NUMWORD * 3; i++)
      	{
      		if (i > 0 && i % 8 == 0) printf("\n");
      		printf("0x%x,", Cipher[i]);
      	}
      
      	//decrypt cipher and compare the result with the standard data
      	tmp = SM2_Decrypt(ks, Cipher, 115, M);
      	if (tmp != 0)
      		return tmp;
      
      	puts("\n\n解密結果:");
      	for (i = 0; i < 19; i++)
      	{
      		if (i>0&&i%8 == 0) printf("\n");
      		printf("0x%x,", M[i]);
      	}
      
      	if (memcmp(M, std_Message, 19) != 0)
      		return ERR_SELFTEST_DEC;
      	puts("\n解密成功");
      
      	return 0;
      }
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat SM2_ENC.h
      #pragma once
      
      #include "miracl.h"
      
      #define ECC_WORDSIZE 8
      #define SM2_NUMBITS 256
      #define SM2_NUMWORD (SM2_NUMBITS/ECC_WORDSIZE) //32
      #define ERR_INFINITY_POINT 0x00000001
      #define ERR_NOT_VALID_ELEMENT 0x00000002
      #define ERR_NOT_VALID_POINT 0x00000003
      #define ERR_ORDER 0x00000004
      #define ERR_ARRAY_NULL 0x00000005
      #define ERR_C3_MATCH 0x00000006
      #define ERR_ECURVE_INIT 0x00000007
      #define ERR_SELFTEST_KG 0x00000008
      #define ERR_SELFTEST_ENC 0x00000009
      #define ERR_SELFTEST_DEC 0x0000000A
      
      extern unsigned char SM2_p[32];
      extern unsigned char SM2_a[32];
      extern unsigned char SM2_b[32];
      extern unsigned char SM2_n[32];
      extern unsigned char SM2_Gx[32];
      extern unsigned char SM2_Gy[32];
      extern unsigned char SM2_h[32];
      
       
      
      big para_p, para_a, para_b, para_n, para_Gx, para_Gy, para_h;
      epoint *G;
      miracl *mip;
      int Test_Point(epoint* point);
      int Test_PubKey(epoint *pubKey);
      int Test_Null(unsigned char array[], int len);
      int SM2_Init();
      int SM2_KeyGeneration(big priKey, epoint *pubKey);
      int SM2_Encrypt(unsigned char* randK, epoint *pubKey, unsigned char M[], int klen, unsigned char C[]);
      int SM2_Decrypt(big dB, unsigned char C[], int Clen, unsigned char M[]);
      int SM2_ENC_SelfTest();
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat test.c
      
      #include "SM2_ENC.h"
      
      void main()
      {
      	SM2_ENC_SelfTest();
      }
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ cat Makefile
      # Makefile
      
      # Compiler settings
      CC = gcc
      CFLAGS = -Wall
      LDFLAGS = -lmymiracl # Assuming you have a library called 'mymiracl' for MIRACL functions
      
      # Source and header files
      SOURCES = SM2_ENC.c kdf.c test.c
      HEADERS = kdf.h miracl.h mirdef.h SM2_ENC.h
      
      # Executable name
      EXECUTABLE = test
      
      # Default target
      all: $(EXECUTABLE)
      
      # Linking the executable
      $(EXECUTABLE): $(SOURCES) $(HEADERS)
      	$(CC) $(CFLAGS) $(SOURCES) -o $(EXECUTABLE) $(LDFLAGS)
      
      # Clean target
      clean:
      	rm -f $(EXECUTABLE)
      
      # Run target
      run: $(EXECUTABLE)
      	./$(EXECUTABLE)
      
      # Phony targets
      .PHONY: all clean run
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ make
      gcc -Wall SM2_ENC.c kdf.c test.c -o test -lmymiracl 
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiaocaidaima$ ./test
      原文:
      0x65,0x6E,0x63,0x72,0x79,0x70,0x74,0x69,0x6F,0x6E,0x20,0x73,0x74,0x61,0x6E,0x64,0x61,0x72,0x64 
      
      
      密文:
      0x04,0xEB,0xFC,0x71,0x8E,0x8D,0x17,0x98,0x62,0x04,0x32,0x26,0x8E,0x77,0xFE,0xB6,0x41,0x5E,0x2E,0xDE,0x0E,0x07,0x3C,0x0F,0x4F,0x64,0x0E,0xCD,0x2E,0x14,0x9A,0x73,0xE8,0x58,0xF9,0xD8,0x1E,0x54,0x30,0xA5,0x7B,0x36,0xDA,0xAB,0x8F,0x95,0x0A,0x3C,0x64,0xE6,0xEE,0x6A,0x63,0x09,0x4D,0x99,0x28,0x3A,0xFF,0x76,0x7E,0x12,0x4D,0xF0,0x59,0x98,0x3C,0x18,0xF8,0x09,0xE2,0x62,0x92,0x3C,0x53,0xAE,0xC2,0x95,0xD3,0x03,0x83,0xB5,0x4E,0x39,0xD6,0x09,0xD1,0x60,0xAF,0xCB,0x19,0x08,0xD0,0xBD,0x87,0x66,0x21,0x88,0x6C,0xA9,0x89,0xCA,0x9C,0x7D,0x58,0x08,0x73,0x07,0xCA,0x93,0x09,0x2D,0x65,0x1E,0xFA
      
      
      解密結果:
      0x65,0x6E,0x63,0x72,0x79,0x70,0x74,0x69,0x6F,0x6E,0x20,0x73,0x74,0x61,0x6E,0x64,0x61,0x72,0x64 
      
      解密成功
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiamijiaocaidaima$ git add kdf.c  kdf.h  Makefile  miracl.h  mirdef.h  SM2_ENC.c  SM2_ENC.h  test.c
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiamijiaocaidaima$ git commit -m "sm2 jia mi jie mi jiao cai dai ma"
      [master 594b472] sm2 jia mi jie mi jiao cai dai ma
       8 files changed, 2515 insertions(+)
       create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/Makefile
       create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/SM2_ENC.c
       create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/SM2_ENC.h
       create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/kdf.c
       create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/kdf.h
       create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/miracl.h
       create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/mirdef.h
       create mode 100644 20221320fengtairui/sm2jiamijiaocaidaima/test.c
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2jiamijiaocaidaima$ git log
      commit 594b472ff865e212fab25e77d29d4a6cffdd2f80 (HEAD -> master)
      Author: fengtairui <1978274655@qq.com>
      Date:   Sun Nov 3 23:38:55 2024 +0800
      
          sm2 jia mi jie mi jiao cai dai ma
      
      命令行驗證
      自驗證成功
      

      簽名驗簽

      源代碼運行
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ tree
      .
      ├── kdf.c
      ├── kdf.h
      ├── Makefile
      ├── miracl.h
      ├── mirdef.h
      ├── SM2_sv.c
      ├── SM2_sv.h
      └── test.c
      
      1 directory, 8 files
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat kdf.c
      #include "kdf.h"
      #include "SM2_sv.h"
      
      
      /****************************************************************
      Function: BiToW
      Description: calculate W from Bi
      Calls:
      Called By: SM3_compress
      Input: Bi[16] //a block of a message
      Output: W[68]
      Return: null
      Others:
      ****************************************************************/
      void BiToW(unsigned long Bi[], unsigned long W[])
      {
      	int i;
      	unsigned long tmp;
      	for (i = 0; i <= 15; i++)
      	{
      		W[i] = Bi[i];
      	}
      	for (i = 16; i <= 67; i++)
      	{
      		tmp = W[i - 16]
      			^ W[i - 9]
      			^ SM3_rotl32(W[i - 3], 15);
      		W[i] = SM3_p1(tmp)
      			^ (SM3_rotl32(W[i - 13], 7))
      			^ W[i - 6];
      	}
      }
      /*****************************************************************
      Function: WToW1
      Description: calculate W1 from W
      Calls:
      Called By: SM3_compress
      Input: W[68]
      Output: W1[64]
      Return: null
      Others:
      *****************************************************************/
      void WToW1(unsigned long W[], unsigned long W1[])
      {
      	int i;
      	for (i = 0; i <= 63; i++)
      	{
      		W1[i] = W[i] ^ W[i + 4];
      	}
      }
      /******************************************************************
      Function: CF
      Description: calculate the CF compress function and update V
      Calls:
      Called By: SM3_compress
      Input: W[68]
      W1[64]
      V[8]
      Output: V[8]
      Return: null
      Others:
      ********************************************************************/
      void CF(unsigned long W[], unsigned long W1[], unsigned long V[])
      {
      	unsigned long SS1;
      	unsigned long SS2;
      	unsigned long TT1;
      	unsigned long TT2;
      	unsigned long A, B, C, D, E, F, G, H;
      	unsigned long T = SM3_T1;
      	unsigned long FF;
      	unsigned long GG;
      	int j;
      	//reg init,set ABCDEFGH=V0
      	A = V[0];
      	B = V[1];
      	C = V[2];
      	D = V[3];
      	E = V[4];
      	F = V[5];
      	G = V[6];
      	H = V[7];
      	for (j = 0; j <= 63; j++)
      	{
      		//SS1
      		if (j == 0)
      		{
      			T = SM3_T1;
      		}
      		else if (j == 16)
      		{
      			T = SM3_rotl32(SM3_T2, 16);
      		}
      		else
      		{
      			T = SM3_rotl32(T, 1);
      		}
      		SS1 = SM3_rotl32((SM3_rotl32(A, 12) + E + T), 7);
      		//SS2
      		SS2 = SS1 ^ SM3_rotl32(A, 12);
      		//TT1
      		if (j <= 15)
      		{
      			FF = SM3_ff0(A, B, C);
      		}
      		else
      		{
      			FF = SM3_ff1(A, B, C);
      		}
      		TT1 = FF + D + SS2 + *W1;
      		W1++;
      		//TT2
      		if (j <= 15)
      		{
      			GG = SM3_gg0(E, F, G);
      		}
      		else
      		{
      			GG = SM3_gg1(E, F, G);
      		}
      		TT2 = GG + H + SS1 + *W;
      		W++;
      		//D
      		D = C;
      		//C
      		C = SM3_rotl32(B, 9);
      		//B
      		B = A;
      		//A
      		A = TT1;
      		//H
      		H = G;
      		//G
      		G = SM3_rotl32(F, 19);
      		//F
      		F = E;
      		//E
      		E = SM3_p0(TT2);
      	}
      	//update V
      	V[0] = A ^ V[0];
      	V[1] = B ^ V[1];
      	V[2] = C ^ V[2];
      	V[3] = D ^ V[3];
      	V[4] = E ^ V[4];
      	V[5] = F ^ V[5];
      	V[6] = G ^ V[6];
      	V[7] = H ^ V[7];
      }
      /******************************************************************************
      Function: BigEndian
      Description: unsigned int endian converse.GM/T 0004-2012 requires to use big-endian.
      if CPU uses little-endian, BigEndian function is a necessary
      call to change the little-endian format into big-endian format.
      Calls:
      Called By: SM3_compress, SM3_done
      Input: src[bytelen]
      bytelen
      Output: des[bytelen]
      Return: null
      Others: src and des could implies the same address
      *******************************************************************************/
      void BigEndian(unsigned char src[], unsigned int bytelen, unsigned char des[])
      {
      	unsigned char tmp = 0;
      	unsigned long i = 0;
      	for (i = 0; i < bytelen / 4; i++)
      	{
      		tmp = des[4 * i];
      		des[4 * i] = src[4 * i + 3];
      		src[4 * i + 3] = tmp;
      		tmp = des[4 * i + 1];
      		des[4 * i + 1] = src[4 * i + 2];
      		des[4 * i + 2] = tmp;
      	}
      }
      /******************************************************************************
      Function: SM3_init
      Description: initiate SM3 state
      Calls:
      Called By: SM3_256
      Input: SM3_STATE *md
      Output: SM3_STATE *md
      Return: null
      Others:
      *******************************************************************************/
      void SM3_init(SM3_STATE *md)
      {
      	md->curlen = md->length = 0;
      	md->state[0] = SM3_IVA;
      	md->state[1] = SM3_IVB;
      	md->state[2] = SM3_IVC;
      	md->state[3] = SM3_IVD;
      	md->state[4] = SM3_IVE;
      	md->state[5] = SM3_IVF;
      	md->state[6] = SM3_IVG;
      	md->state[7] = SM3_IVH;
      }
      /******************************************************************************
      Function: SM3_compress
      Description: compress a single block of message
      Calls: BigEndian
      BiToW
      WToW1
      CF
      Called By: SM3_256
      Input: SM3_STATE *md
      Output: SM3_STATE *md
      Return: null
      Others:
      *******************************************************************************/
      void SM3_compress(SM3_STATE * md)
      {
      	unsigned long W[68];
      	unsigned long W1[64];
      	//if CPU uses little-endian, BigEndian function is a necessary call
      	BigEndian(md->buf, 64, md->buf);
      	BiToW((unsigned long *)md->buf, W);
      	WToW1(W, W1);
      	CF(W, W1, md->state);
      }
      /******************************************************************************
      Function: SM3_process
      Description: compress the first (len/64) blocks of message
      Calls: SM3_compress
      Called By: SM3_256
      Input: SM3_STATE *md
      unsigned char buf[len] //the input message
      int len //bytelen of message
      Output: SM3_STATE *md
      Return: null
      Others:
      *******************************************************************************/
      void SM3_process(SM3_STATE * md, unsigned char *buf, int len)
      {
      	while (len--)
      	{
      		/* copy byte */
      		md->buf[md->curlen] = *buf++;
      		md->curlen++;
      		/* is 64 bytes full? */
      		if (md->curlen == 64)
      		{
      			SM3_compress(md);
      			md->length += 512;
      			md->curlen = 0;
      		}
      	}
      }
      /******************************************************************************
      Function: SM3_done
      Description: compress the rest message that the SM3_process has left behind
      Calls: SM3_compress
      Called By: SM3_256
      Input: SM3_STATE *md
      Output: unsigned char *hash
      Return: null
      Others:
      *******************************************************************************/
      void SM3_done(SM3_STATE *md, unsigned char hash[])
      {
      	int i;
      	unsigned char tmp = 0;
      	/* increase the bit length of the message */
      	md->length += md->curlen << 3;
      	/* append the '1' bit */
      	md->buf[md->curlen] = 0x80;
      	md->curlen++;
      	/* if the length is currently above 56 bytes, appends zeros till
      	it reaches 64 bytes, compress the current block, creat a new
      	block by appending zeros and length,and then compress it
      	*/
      	if (md->curlen > 56)
      	{
      		for (; md->curlen < 64;)
      		{
      			md->buf[md->curlen] = 0;
      			md->curlen++;
      		}
      		SM3_compress(md);
      		md->curlen = 0;
      	}
      	/* if the length is less than 56 bytes, pad upto 56 bytes of zeroes */
      	for (; md->curlen < 56;)
      	{
      		md->buf[md->curlen] = 0;
      		md->curlen++;
      	}
      	/* since all messages are under 2^32 bits we mark the top bits zero */
      	for (i = 56; i < 60; i++)
      	{
      		md->buf[i] = 0;
      	}
      	/* append length */
      	md->buf[63] = md->length & 0xff;
      	md->buf[62] = (md->length >> 8) & 0xff;
      	md->buf[61] = (md->length >> 16) & 0xff;
      	md->buf[60] = (md->length >> 24) & 0xff;
      	SM3_compress(md);
      	/* copy output */
      	memcpy(hash, md->state, SM3_len / 8);
      	BigEndian(hash, SM3_len / 8, hash);//if CPU uses little-endian, BigEndian function is a necessary call
      }
      /******************************************************************************
      Function: SM3_256
      Description: calculate a hash value from a given message
      Calls: SM3_init
      SM3_process
      SM3_done
      Called By:
      Input: unsigned char buf[len] //the input message
      int len //bytelen of the message
      Output: unsigned char hash[32]
      Return: null
      Others:
      *******************************************************************************/
      void SM3_256(unsigned char buf[], int len, unsigned char hash[])
      {
      	SM3_STATE md;
      	SM3_init(&md);
      	SM3_process(&md, buf, len);
      	SM3_done(&md, hash);
      }
      /******************************************************************************
      Function: SM3_KDF
      Description: key derivation function
      Calls: SM3_init
      SM3_process
      SM3_done
      Called By:
      Input: unsigned char Z[zlen]
      unsigned short zlen //bytelen of Z
      unsigned short klen //bytelen of K
      Output: unsigned char K[klen] //shared secret key
      Return: null
      Others:
      *******************************************************************************/
      void SM3_KDF(unsigned char Z[], unsigned short zlen, unsigned short klen, unsigned char K[])
      {
      	unsigned short i, j, t;
      	unsigned int bitklen;
      	SM3_STATE md;
      	unsigned char Ha[SM2_NUMWORD];
      	unsigned char ct[4] = { 0,0,0,1 };
      	bitklen = klen * 8;
      	if (bitklen%SM2_NUMBITS)
      		t = bitklen / SM2_NUMBITS + 1;
      	else
      		t = bitklen / SM2_NUMBITS;
      	//s4: K=Ha1||Ha2||...
      	for (i = 1; i < t; i++)
      	{
      		//s2: Hai=Hv(Z||ct)
      		SM3_init(&md);
      		SM3_process(&md, Z, zlen);
      		SM3_process(&md, ct, 4);
      		SM3_done(&md, Ha);
      		memcpy((K + SM2_NUMWORD * (i - 1)), Ha, SM2_NUMWORD);
      		if (ct[3] == 0xff)
      		{
      			ct[3] = 0;
      			if (ct[2] == 0xff)
      			{
      				ct[2] = 0;
      				if (ct[1] == 0xff)
      				{
      					ct[1] = 0;
      					ct[0]++;
      				}
      				else ct[1]++;
      			}
      			else ct[2]++;
      		}
      		else ct[3]++;
      	}
      	//s3: klen/v       ?0?6   
      	SM3_init(&md);
      	SM3_process(&md, Z, zlen);
      	SM3_process(&md, ct, 4);
      	SM3_done(&md, Ha);
      	if (bitklen%SM2_NUMBITS)
      	{
      		i = (SM2_NUMBITS - bitklen + SM2_NUMBITS * (bitklen / SM2_NUMBITS)) / 8;
      		j = (bitklen - SM2_NUMBITS * (bitklen / SM2_NUMBITS)) / 8;
      		memcpy((K + SM2_NUMWORD * (t - 1)), Ha, j);
      	}
      	else
      	{
      		memcpy((K + SM2_NUMWORD * (t - 1)), Ha, SM2_NUMWORD);
      	}
      }
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat kdf.h
      #ifndef KDF_H
      #define KDF_H
      
      #include <string.h>
      #include "SM2_sv.h" // 確保這個頭文件包含了 SM2_NUMWORD 和 SM2_NUMBITS 的定義
      
      #define SM3_len 256
      #define SM3_T1 0x79CC4519
      #define SM3_T2 0x7A879D8A
      #define SM3_IVA 0x7380166f
      #define SM3_IVB 0x4914b2b9
      #define SM3_IVC 0x172442d7
      #define SM3_IVD 0xda8a0600
      #define SM3_IVE 0xa96f30bc
      #define SM3_IVF 0x163138aa
      #define SM3_IVG 0xe38dee4d
      #define SM3_IVH 0xb0fb0e4e
      
      /* Various logical functions */
      #define SM3_p1(x) (x^SM3_rotl32(x,15)^SM3_rotl32(x,23))
      #define SM3_p0(x) (x^SM3_rotl32(x,9)^SM3_rotl32(x,17))
      #define SM3_ff0(a,b,c) (a^b^c)
      #define SM3_ff1(a,b,c) ((a&b)|(a&c)|(b&c))
      #define SM3_gg0(e,f,g) (e^f^g)
      #define SM3_gg1(e,f,g) ((e&f)|((~e)&g))
      #define SM3_rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
      #define SM3_rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
      
      typedef struct {
          unsigned long state[8];
          unsigned long length;
          unsigned long curlen;
          unsigned char buf[64];
      } SM3_STATE;
      
      void BiToW(unsigned long Bi[], unsigned long W[]);
      void WToW1(unsigned long W[], unsigned long W1[]);
      void CF(unsigned long W[], unsigned long W1[], unsigned long V[]);
      void BigEndian(unsigned char src[], unsigned int bytelen, unsigned char des[]);
      void SM3_init(SM3_STATE *md);
      void SM3_process(SM3_STATE *md, unsigned char buf[], int len);
      void SM3_done(SM3_STATE *md, unsigned char *hash);
      void SM3_compress(SM3_STATE *md);
      void SM3_256(unsigned char buf[], int len, unsigned char hash[]);
      void SM3_KDF(unsigned char *Z, unsigned short zlen, unsigned short klen, unsigned char *K);
      
      #endiffengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat miracl.h
      /***************************************************************************
                                                                                 *
      Copyright 2013 CertiVox UK Ltd.                                           *
                                                                                 *
      This file is part of CertiVox MIRACL Crypto SDK.                           *
                                                                                 *
      The CertiVox MIRACL Crypto SDK provides developers with an                 *
      extensive and efficient set of cryptographic functions.                    *
      For further information about its features and functionalities please      *
      refer to http://www.certivox.com                                           *
                                                                                 *
      * The CertiVox MIRACL Crypto SDK is free software: you can                 *
        redistribute it and/or modify it under the terms of the                  *
        GNU Affero General Public License as published by the                    *
        Free Software Foundation, either version 3 of the License,               *
        or (at your option) any later version.                                   *
                                                                                 *
      * The CertiVox MIRACL Crypto SDK is distributed in the hope                *
        that it will be useful, but WITHOUT ANY WARRANTY; without even the       *
        implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
        See the GNU Affero General Public License for more details.              *
                                                                                 *
      * You should have received a copy of the GNU Affero General Public         *
        License along with CertiVox MIRACL Crypto SDK.                           *
        If not, see <http://www.gnu.org/licenses/>.                              *
                                                                                 *
      You can be released from the requirements of the license by purchasing     *
      a commercial license. Buying such a license is mandatory as soon as you    *
      develop commercial activities involving the CertiVox MIRACL Crypto SDK     *
      without disclosing the source code of your own applications, or shipping   *
      the CertiVox MIRACL Crypto SDK with a closed source product.               *
                                                                                 *
      ***************************************************************************/
      
      #ifndef MIRACL_H
      #define MIRACL_H
      
      /*
       *   main MIRACL header - miracl.h.
       */
      
      #include "mirdef.h"
      
      /* Some modifiable defaults... */
      
      /* Use a smaller buffer if space is limited, don't be so wasteful! */
      
      #ifdef MR_STATIC
      #define MR_DEFAULT_BUFFER_SIZE 260
      #else
      #define MR_DEFAULT_BUFFER_SIZE 1024
      #endif
      
      /* see mrgf2m.c */
      
      #ifndef MR_KARATSUBA
      #define MR_KARATSUBA 2
      #endif
      
      #ifndef MR_DOUBLE_BIG
      
      #ifdef MR_KCM
        #ifdef MR_FLASH
          #define MR_SPACES 32
        #else
          #define MR_SPACES 31
        #endif
      #else
        #ifdef MR_FLASH
          #define MR_SPACES 28
        #else
          #define MR_SPACES 27
        #endif
      #endif
      
      #else
      
      #ifdef MR_KCM
        #ifdef MR_FLASH
          #define MR_SPACES 44
        #else
          #define MR_SPACES 43
        #endif
      #else
        #ifdef MR_FLASH
          #define MR_SPACES 40
        #else
          #define MR_SPACES 39
        #endif
      #endif
      
      #endif
      
      /* To avoid name clashes - undefine this */
      
      /* #define compare mr_compare */
      
      #ifdef MR_AVR
      #include <avr/pgmspace.h>
      #endif
      
      /* size of bigs and elliptic curve points for memory allocation from stack or heap */
      
      #define MR_ROUNDUP(a,b) ((a)-1)/(b)+1
      
      #define MR_SL sizeof(long)
      
      #ifdef MR_STATIC
      
      #define MR_SIZE (((sizeof(struct bigtype)+(MR_STATIC+2)*sizeof(mr_utype))-1)/MR_SL+1)*MR_SL
      #define MR_BIG_RESERVE(n) ((n)*MR_SIZE+MR_SL)
      
      #ifdef MR_AFFINE_ONLY
      #define MR_ESIZE (((sizeof(epoint)+MR_BIG_RESERVE(2))-1)/MR_SL+1)*MR_SL
      #else
      #define MR_ESIZE (((sizeof(epoint)+MR_BIG_RESERVE(3))-1)/MR_SL+1)*MR_SL
      #endif
      #define MR_ECP_RESERVE(n) ((n)*MR_ESIZE+MR_SL)
      
      #define MR_ESIZE_A (((sizeof(epoint)+MR_BIG_RESERVE(2))-1)/MR_SL+1)*MR_SL
      #define MR_ECP_RESERVE_A(n) ((n)*MR_ESIZE_A+MR_SL)
      
      
      #endif
      
      /* useful macro to convert size of big in words, to size of required structure */
      
      #define mr_size(n) (((sizeof(struct bigtype)+((n)+2)*sizeof(mr_utype))-1)/MR_SL+1)*MR_SL
      #define mr_big_reserve(n,m) ((n)*mr_size(m)+MR_SL)
      
      #define mr_esize_a(n) (((sizeof(epoint)+mr_big_reserve(2,(n)))-1)/MR_SL+1)*MR_SL 
      #define mr_ecp_reserve_a(n,m) ((n)*mr_esize_a(m)+MR_SL)
      
      #ifdef MR_AFFINE_ONLY
      #define mr_esize(n) (((sizeof(epoint)+mr_big_reserve(2,(n)))-1)/MR_SL+1)*MR_SL 
      #else
      #define mr_esize(n) (((sizeof(epoint)+mr_big_reserve(3,(n)))-1)/MR_SL+1)*MR_SL 
      #endif
      #define mr_ecp_reserve(n,m) ((n)*mr_esize(m)+MR_SL)
      
      
      /* if basic library is static, make sure and use static C++ */
      
      #ifdef MR_STATIC
       #ifndef BIGS
        #define BIGS MR_STATIC
       #endif
       #ifndef ZZNS
        #define ZZNS MR_STATIC
       #endif
       #ifndef GF2MS
        #define GF2MS MR_STATIC
       #endif
      #endif
      
      #ifdef __ia64__
      #if MIRACL==64
      #define MR_ITANIUM
      #include <ia64intrin.h>
      #endif
      #endif
      
      #ifdef _M_X64
      #ifdef _WIN64
      #if MIRACL==64
      #define MR_WIN64
      #include <intrin.h>
      #endif
      #endif
      #endif
      
      #ifndef MR_NO_FILE_IO
      #include <stdio.h>
      #endif
                     /* error returns */
      
      #define MR_ERR_BASE_TOO_BIG       1
      #define MR_ERR_DIV_BY_ZERO        2
      #define MR_ERR_OVERFLOW           3
      #define MR_ERR_NEG_RESULT         4
      #define MR_ERR_BAD_FORMAT         5
      #define MR_ERR_BAD_BASE           6
      #define MR_ERR_BAD_PARAMETERS     7
      #define MR_ERR_OUT_OF_MEMORY      8
      #define MR_ERR_NEG_ROOT           9
      #define MR_ERR_NEG_POWER         10
      #define MR_ERR_BAD_ROOT          11
      #define MR_ERR_INT_OP            12
      #define MR_ERR_FLASH_OVERFLOW    13
      #define MR_ERR_TOO_BIG           14
      #define MR_ERR_NEG_LOG           15
      #define MR_ERR_DOUBLE_FAIL       16
      #define MR_ERR_IO_OVERFLOW       17
      #define MR_ERR_NO_MIRSYS         18
      #define MR_ERR_BAD_MODULUS       19
      #define MR_ERR_NO_MODULUS        20
      #define MR_ERR_EXP_TOO_BIG       21
      #define MR_ERR_NOT_SUPPORTED     22
      #define MR_ERR_NOT_DOUBLE_LEN    23
      #define MR_ERR_NOT_IRREDUC       24
      #define MR_ERR_NO_ROUNDING       25
      #define MR_ERR_NOT_BINARY        26
      #define MR_ERR_NO_BASIS          27
      #define MR_ERR_COMPOSITE_MODULUS 28
      #define MR_ERR_DEV_RANDOM        29
      
                     /* some useful definitions */
      
      #define forever for(;;)   
      
      #define mr_abs(x)  ((x)<0? (-(x)) : (x))
      
      #ifndef TRUE
        #define TRUE 1
      #endif
      #ifndef FALSE
        #define FALSE 0
      #endif
      
      #define OFF 0
      #define ON 1
      #define PLUS 1
      #define MINUS (-1)
      
      #define M1 (MIRACL-1)
      #define M2 (MIRACL-2)
      #define M3 (MIRACL-3)
      #define M4 (MIRACL-4)
      #define TOPBIT ((mr_small)1<<M1)
      #define SECBIT ((mr_small)1<<M2)
      #define THDBIT ((mr_small)1<<M3)
      #define M8 (MIRACL-8)
      
      #define MR_MAXDEPTH 24
                                    /* max routine stack depth */
      /* big and flash variables consist of an encoded length, *
       * and an array of mr_smalls containing the digits       */
      
      #ifdef MR_COUNT_OPS
      extern int fpm2,fpi2,fpc,fpa,fpx;
      #endif
      
      typedef int BOOL;
      
      #define MR_BYTE unsigned char
      
      #ifdef MR_BITSINCHAR
       #if MR_BITSINCHAR == 8
        #define MR_TOBYTE(x) ((MR_BYTE)(x))
       #else
        #define MR_TOBYTE(x) ((MR_BYTE)((x)&0xFF))
       #endif
      #else
       #define MR_TOBYTE(x) ((MR_BYTE)(x))
      #endif
      
      #ifdef MR_FP
      
        typedef mr_utype mr_small;
        #ifdef mr_dltype
        typedef mr_dltype mr_large;
        #endif
      
        #define MR_DIV(a,b)    (modf((a)/(b),&dres),dres)
      
        #ifdef MR_FP_ROUNDING
      
      /* slightly dicey - for example the optimizer might remove the MAGIC ! */
      
          #define MR_LROUND(a)   ( ( (a) + MR_MAGIC ) - MR_MAGIC )
        #else
          #define MR_LROUND(a)   (modfl((a),&ldres),ldres)
        #endif
      
        #define MR_REMAIN(a,b) ((a)-(b)*MR_DIV((a),(b)))
      
      #else
      
        typedef unsigned mr_utype mr_small;
        #ifdef mr_dltype
          typedef unsigned mr_dltype mr_large;
        #endif
        #ifdef mr_qltype
          typedef unsigned mr_qltype mr_vlarge;
        #endif
      
        #define MR_DIV(a,b)    ((a)/(b))
        #define MR_REMAIN(a,b) ((a)%(b))
        #define MR_LROUND(a)   ((a))
      #endif
      
      
      /* It might be wanted to change this to unsigned long */
      
      typedef unsigned int mr_lentype;
      
      struct bigtype
      {
          mr_lentype len;
          mr_small *w;
      };                
      
      typedef struct bigtype *big;
      typedef big zzn;
      
      typedef big flash;
      
      #define MR_MSBIT ((mr_lentype)1<<(MR_IBITS-1))
      
      #define MR_OBITS (MR_MSBIT-1)
      
      #if MIRACL >= MR_IBITS
      #define MR_TOOBIG (1<<(MR_IBITS-2))
      #else
      #define MR_TOOBIG (1<<(MIRACL-1))
      #endif
      
      #ifdef  MR_FLASH
      #define MR_EBITS (8*sizeof(double) - MR_FLASH)
                                        /* no of Bits per double exponent */
      #define MR_BTS 16
      #define MR_MSK 0xFFFF
      
      #endif
      
      /* Default Hash function output size in bytes */
      #define MR_HASH_BYTES     32
      
      /* Marsaglia & Zaman Random number generator */
      /*         constants      alternatives       */
      #define NK   37           /* 21 */
      #define NJ   24           /*  6 */
      #define NV   14           /*  8 */
      
      /* Use smaller values if memory is precious */
      
      #ifdef mr_dltype
      
      #ifdef MR_LITTLE_ENDIAN 
      #define MR_BOT 0
      #define MR_TOP 1
      #endif
      #ifdef MR_BIG_ENDIAN
      #define MR_BOT 1
      #define MR_TOP 0
      #endif
      
      union doubleword
      {
          mr_large d;
          mr_small h[2];
      };
      
      #endif
      
      /* chinese remainder theorem structures */
      
      typedef struct {
      big *C;
      big *V;
      big *M;
      int NP;
      } big_chinese;
      
      typedef struct {
      mr_utype *C;
      mr_utype *V;
      mr_utype *M;
      int NP;
      } small_chinese;
      
      /* Cryptographically strong pseudo-random number generator */
      
      typedef struct {
      mr_unsign32 ira[NK];  /* random number...   */
      int         rndptr;   /* ...array & pointer */
      mr_unsign32 borrow;
      int pool_ptr;
      char pool[MR_HASH_BYTES];    /* random pool */
      } csprng;
      
      /* secure hash Algorithm structure */
      
      typedef struct {
      mr_unsign32 length[2];
      mr_unsign32 h[8];
      mr_unsign32 w[80];
      } sha256;
      
      typedef sha256 sha;
      
      #ifdef mr_unsign64
      
      typedef struct {
      mr_unsign64 length[2];
      mr_unsign64 h[8];
      mr_unsign64 w[80];
      } sha512;
      
      typedef sha512 sha384;
      
      typedef struct {
      mr_unsign64 length;
      mr_unsign64 S[5][5];
      int rate,len;
      } sha3;
      
      #endif
      
      /* Symmetric Encryption algorithm structure */
      
      #define MR_ECB   0
      #define MR_CBC   1
      #define MR_CFB1  2
      #define MR_CFB2  3
      #define MR_CFB4  5
      #define MR_PCFB1 10
      #define MR_PCFB2 11
      #define MR_PCFB4 13
      #define MR_OFB1  14
      #define MR_OFB2  15
      #define MR_OFB4  17
      #define MR_OFB8  21
      #define MR_OFB16 29
      
      typedef struct {
      int Nk,Nr;
      int mode;
      mr_unsign32 fkey[60];
      mr_unsign32 rkey[60];
      char f[16];
      } aes;
      
      /* AES-GCM suppport. See mrgcm.c */
      
      #define GCM_ACCEPTING_HEADER 0
      #define GCM_ACCEPTING_CIPHER 1
      #define GCM_NOT_ACCEPTING_MORE 2
      #define GCM_FINISHED 3
      #define GCM_ENCRYPTING 0
      #define GCM_DECRYPTING 1
      
      typedef struct {
      mr_unsign32 table[128][4]; /* 2k bytes */
      MR_BYTE stateX[16];
      MR_BYTE Y_0[16];
      mr_unsign32 counter;
      mr_unsign32 lenA[2],lenC[2];
      int status;
      aes a;
      } gcm;
      
                     /* Elliptic curve point status */
      
      #define MR_EPOINT_GENERAL    0
      #define MR_EPOINT_NORMALIZED 1
      #define MR_EPOINT_INFINITY   2
      
      #define MR_NOTSET     0
      #define MR_PROJECTIVE 0
      #define MR_AFFINE     1
      #define MR_BEST       2
      #define MR_TWIST      8
      
      #define MR_OVER       0
      #define MR_ADD        1
      #define MR_DOUBLE     2
      
      /* Twist type */
      
      #define MR_QUADRATIC 2
      #define MR_CUBIC_M   0x3A
      #define MR_CUBIC_D   0x3B
      #define MR_QUARTIC_M 0x4A
      #define MR_QUARTIC_D 0x4B
      #define MR_SEXTIC_M  0x6A
      #define MR_SEXTIC_D  0x6B
      
      
      /* Fractional Sliding Windows for ECC - how much precomputation storage to use ? */
      /* Note that for variable point multiplication there is an optimal value 
         which can be reduced if space is short. For fixed points its a matter of 
         how much ROM is available to store precomputed points.
         We are storing the k points (P,3P,5P,7P,...,[2k-1].P) */
      
      /* These values can be manually tuned for optimal performance... */
      
      #ifdef MR_SMALL_EWINDOW
      #define MR_ECC_STORE_N  3   /* point store for ecn  variable point multiplication */
      #define MR_ECC_STORE_2M 3   /* point store for ec2m variable point multiplication */
      #define MR_ECC_STORE_N2 3   /* point store for ecn2 variable point multiplication */
      #else
      #define MR_ECC_STORE_N  8   /* 8/9 is close to optimal for 256 bit exponents */
      #define MR_ECC_STORE_2M 9   
      #define MR_ECC_STORE_N2 8   
      #endif
      
      /*#define MR_ECC_STORE_N2_PRECOMP MR_ECC_STORE_N2 */
                                  /* Might want to make this bigger.. */
      
      /* If multi-addition is of m points, and s precomputed values are required, this is max of m*s (=4.10?) */
      #define MR_MAX_M_T_S 64
      
      /* Elliptic Curve epoint structure. Uses projective (X,Y,Z) co-ordinates */
      
      typedef struct {
      int marker;
      big X;
      big Y;
      #ifndef MR_AFFINE_ONLY
      big Z;
      #endif
      } epoint;
      
      
      /* Structure for Comb method for finite *
         field exponentiation with precomputation */
      
      typedef struct {
      #ifdef MR_STATIC
          const mr_small *table;
      #else
          mr_small *table;
      #endif
          big n; 
          int window;
          int max;
      } brick;
      
      /* Structure for Comb method for elliptic *
         curve exponentiation with precomputation  */
      
      typedef struct {
      #ifdef MR_STATIC
          const mr_small *table; 
      #else
          mr_small *table;
      #endif
          big a,b,n;
          int window;
          int max;
      } ebrick;
      
      typedef struct {
      #ifdef MR_STATIC
          const mr_small *table;
      #else
          mr_small *table;
      #endif
          big a6,a2;
          int m,a,b,c;
          int window;
          int max;
      } ebrick2;
      
      typedef struct
      {
          big a;
          big b;
      } zzn2;
      
      typedef struct
      {
          zzn2 a;
          zzn2 b;
          BOOL unitary;
      } zzn4;
      
      typedef struct 
      {
          int marker;
          zzn2 x;
          zzn2 y;
      #ifndef MR_AFFINE_ONLY
          zzn2 z;
      #endif
      
      } ecn2;
      
      typedef struct
      {
          big a;
          big b;
          big c;
      } zzn3;
      
      typedef struct
      {
      	zzn2 a;
      	zzn2 b;
      	zzn2 c;
      } zzn6_3x2;
      
      /* main MIRACL instance structure */
      
      /* ------------------------------------------------------------------------*/
      
      typedef struct {
      mr_small base;       /* number base     */
      mr_small apbase;     /* apparent base   */
      int   pack;          /* packing density */
      int   lg2b;          /* bits in base    */
      mr_small base2;      /* 2^mr_lg2b          */
      BOOL (*user)(void);  /* pointer to user supplied function */
      
      int   nib;           /* length of bigs  */
      #ifndef MR_STRIPPED_DOWN
      int   depth;                 /* error tracing ..*/
      int   trace[MR_MAXDEPTH];    /* .. mechanism    */
      #endif
      BOOL  check;         /* overflow check  */
      BOOL  fout;          /* Output to file   */
      BOOL  fin;           /* Input from file  */
      BOOL  active;
      
      #ifndef MR_NO_FILE_IO
      
      FILE  *infile;       /* Input file       */
      FILE  *otfile;       /* Output file      */
      
      #endif
      
      
      #ifndef MR_NO_RAND
      mr_unsign32 ira[NK];  /* random number...   */
      int         rndptr;   /* ...array & pointer */
      mr_unsign32 borrow;
      #endif
      
                  /* Montgomery constants */
      mr_small ndash;
      big modulus;
      big pR;
      BOOL ACTIVE;
      BOOL MONTY;
      
                             /* Elliptic Curve details   */
      #ifndef MR_NO_SS
      BOOL SS;               /* True for Super-Singular  */
      #endif
      #ifndef MR_NOKOBLITZ
      BOOL KOBLITZ;          /* True for a Koblitz curve */
      #endif
      #ifndef MR_AFFINE_ONLY
      int coord;
      #endif
      int Asize,Bsize;
      
      int M,AA,BB,CC;     /* for GF(2^m) curves */
      
      /*
      mr_small pm,mask;
      int e,k,Me,m;       for GF(p^m) curves */
      
      
      #ifndef MR_STATIC
      
      int logN;           /* constants for fast fourier fft multiplication */
      int nprimes,degree;
      mr_utype *prime,*cr;
      mr_utype *inverse,**roots;
      small_chinese chin;
      mr_utype const1,const2,const3;
      mr_small msw,lsw;
      mr_utype **s1,**s2;   /* pre-computed tables for polynomial reduction */
      mr_utype **t;         /* workspace */
      mr_utype *wa;
      mr_utype *wb;
      mr_utype *wc;
      
      #endif
      
      BOOL same;
      BOOL first_one;
      BOOL debug;
      
      big w0;            /* workspace bigs  */
      big w1,w2,w3,w4;
      big w5,w6,w7;
      big w8,w9,w10,w11;
      big w12,w13,w14,w15;
      big sru;
      big one;
      
      #ifdef MR_KCM
      big big_ndash;
      big ws,wt;
      #endif
      
      big A,B;
      
      /* User modifiables */
      
      #ifndef MR_SIMPLE_IO
      int  IOBSIZ;       /* size of i/o buffer */
      #endif
      BOOL ERCON;        /* error control   */
      int  ERNUM;        /* last error code */
      int  NTRY;         /* no. of tries for probablistic primality testing   */
      #ifndef MR_SIMPLE_IO
      int  INPLEN;       /* input length               */
      #ifndef MR_SIMPLE_BASE
      int  IOBASE;       /* base for input and output */
      
      #endif
      #endif
      #ifdef MR_FLASH
      BOOL EXACT;        /* exact flag      */
      BOOL RPOINT;       /* =ON for radix point, =OFF for fractions in output */
      #endif
      #ifndef MR_STRIPPED_DOWN
      BOOL TRACER;       /* turns trace tracker on/off */
      #endif
      
      #ifdef MR_STATIC
      const int *PRIMES;                      /* small primes array         */
      #ifndef MR_SIMPLE_IO
      char IOBUFF[MR_DEFAULT_BUFFER_SIZE];    /* i/o buffer    */
      #endif
      #else
      int *PRIMES;        /* small primes array         */
      #ifndef MR_SIMPLE_IO
      char *IOBUFF;       /* i/o buffer    */
      #endif
      #endif
      
      #ifdef MR_FLASH
      int   workprec;
      int   stprec;        /* start precision */
      
      int RS,RD;
      double D;
      
      double db,n,p;
      int a,b,c,d,r,q,oldn,ndig;
      mr_small u,v,ku,kv;
      
      BOOL last,carryon;
      flash pi;
      
      #endif
      
      #ifdef MR_FP_ROUNDING
      mr_large inverse_base;
      #endif
      
      #ifndef MR_STATIC
      char *workspace;
      #else
      char workspace[MR_BIG_RESERVE(MR_SPACES)];
      #endif
      
      int TWIST; /* set to twisted curve */
      int qnr;    /* a QNR -1 for p=3 mod 4, -2 for p=5 mod 8, 0 otherwise */
      int cnr;    /* a cubic non-residue */
      int pmod8;
      int pmod9;
      BOOL NO_CARRY;
      } miracl;
      
      /* ------------------------------------------------------------------------*/
      
      
      #ifndef MR_GENERIC_MT
      
      #ifdef MR_WINDOWS_MT
      #define MR_OS_THREADS
      #endif
      
      #ifdef MR_UNIX_MT
      #define MR_OS_THREADS
      #endif
      
      #ifdef MR_OPENMP_MT
      #define MR_OS_THREADS
      #endif
      
      
      #ifndef MR_OS_THREADS
      
      extern miracl *mr_mip;  /* pointer to MIRACL's only global variable */
      
      #endif
      
      #endif
      
      #ifdef MR_GENERIC_MT
      
      #ifdef MR_STATIC
      #define MR_GENERIC_AND_STATIC
      #endif
      
      #define _MIPT_  miracl *,
      #define _MIPTO_ miracl *
      #define _MIPD_  miracl *mr_mip,
      #define _MIPDO_ miracl *mr_mip
      #define _MIPP_  mr_mip,
      #define _MIPPO_ mr_mip
      
      #else
      
      #define _MIPT_    
      #define _MIPTO_  void  
      #define _MIPD_    
      #define _MIPDO_  void  
      #define _MIPP_    
      #define _MIPPO_    
      
      #endif
      
      /* Preamble and exit code for MIRACL routines. *
       * Not used if MR_STRIPPED_DOWN is defined     */ 
      
      #ifdef MR_STRIPPED_DOWN
      #define MR_OUT
      #define MR_IN(N)
      #else
      #define MR_OUT  mr_mip->depth--;        
      #define MR_IN(N) mr_mip->depth++; if (mr_mip->depth<MR_MAXDEPTH) {mr_mip->trace[mr_mip->depth]=(N); if (mr_mip->TRACER) mr_track(_MIPPO_); }
      #endif
      
      /* Function definitions  */
      
      /* Group 0 - Internal routines */
      
      extern void  mr_berror(_MIPT_ int);
      extern mr_small mr_shiftbits(mr_small,int);
      extern mr_small mr_setbase(_MIPT_ mr_small);
      extern void  mr_track(_MIPTO_ );
      extern void  mr_lzero(big);
      extern BOOL  mr_notint(flash);
      extern int   mr_lent(flash);
      extern void  mr_padd(_MIPT_ big,big,big);
      extern void  mr_psub(_MIPT_ big,big,big);
      extern void  mr_pmul(_MIPT_ big,mr_small,big);
      #ifdef MR_FP_ROUNDING
      extern mr_large mr_invert(mr_small);
      extern mr_small imuldiv(mr_small,mr_small,mr_small,mr_small,mr_large,mr_small *);
      extern mr_small mr_sdiv(_MIPT_ big,mr_small,mr_large,big);
      #else
      extern mr_small mr_sdiv(_MIPT_ big,mr_small,big);
      extern void mr_and(big,big,big);
      extern void mr_xor(big,big,big);
      #endif
      extern void  mr_shift(_MIPT_ big,int,big); 
      extern miracl *mr_first_alloc(void);
      extern void  *mr_alloc(_MIPT_ int,int);
      extern void  mr_free(void *);  
      extern void  set_user_function(_MIPT_ BOOL (*)(void));
      extern void  set_io_buffer_size(_MIPT_ int);
      extern int   mr_testbit(_MIPT_ big,int);
      extern void  mr_addbit(_MIPT_ big,int);
      extern int   recode(_MIPT_ big ,int ,int ,int );
      extern int   mr_window(_MIPT_ big,int,int *,int *,int);
      extern int   mr_window2(_MIPT_ big,big,int,int *,int *);
      extern int   mr_naf_window(_MIPT_ big,big,int,int *,int *,int);
      
      extern int   mr_fft_init(_MIPT_ int,big,big,BOOL);
      extern void  mr_dif_fft(_MIPT_ int,int,mr_utype *);
      extern void  mr_dit_fft(_MIPT_ int,int,mr_utype *);
      extern void  fft_reset(_MIPTO_);
      
      extern int   mr_poly_mul(_MIPT_ int,big*,int,big*,big*);
      extern int   mr_poly_sqr(_MIPT_ int,big*,big*);
      extern void  mr_polymod_set(_MIPT_ int,big*,big*);
      extern int   mr_poly_rem(_MIPT_ int,big *,big *);
      
      extern int   mr_ps_big_mul(_MIPT_ int,big *,big *,big *);
      extern int   mr_ps_zzn_mul(_MIPT_ int,big *,big *,big *);
      
      extern mr_small muldiv(mr_small,mr_small,mr_small,mr_small,mr_small *);
      extern mr_small muldvm(mr_small,mr_small,mr_small,mr_small *); 
      extern mr_small muldvd(mr_small,mr_small,mr_small,mr_small *); 
      extern void     muldvd2(mr_small,mr_small,mr_small *,mr_small *); 
      
      extern flash mirvar_mem_variable(char *,int,int);
      extern epoint* epoint_init_mem_variable(_MIPT_ char *,int,int);
      
      /* Group 1 - General purpose, I/O and basic arithmetic routines  */
      
      extern unsigned int   igcd(unsigned int,unsigned int); 
      extern unsigned long  lgcd(unsigned long,unsigned long); 
      extern mr_small sgcd(mr_small,mr_small);
      extern unsigned int   isqrt(unsigned int,unsigned int);
      extern unsigned long  mr_lsqrt(unsigned long,unsigned long);
      extern void  irand(_MIPT_ mr_unsign32);
      extern mr_small brand(_MIPTO_ );       
      extern void  zero(flash);
      extern void  convert(_MIPT_ int,big);
      extern void  uconvert(_MIPT_ unsigned int,big);
      extern void  lgconv(_MIPT_ long,big);
      extern void  ulgconv(_MIPT_ unsigned long,big);
      extern void  tconvert(_MIPT_ mr_utype,big);
      
      #ifdef mr_dltype
      extern void  dlconv(_MIPT_ mr_dltype,big);
      #endif
      
      extern flash mirvar(_MIPT_ int);
      extern flash mirvar_mem(_MIPT_ char *,int);
      extern void  mirkill(big);
      extern void  *memalloc(_MIPT_ int);
      extern void  memkill(_MIPT_ char *,int);
      extern void  mr_init_threading(void);
      extern void  mr_end_threading(void);
      extern miracl *get_mip(void );
      extern void  set_mip(miracl *);
      #ifdef MR_GENERIC_AND_STATIC
      extern miracl *mirsys(miracl *,int,mr_small);
      #else
      extern miracl *mirsys(int,mr_small);
      #endif
      extern miracl *mirsys_basic(miracl *,int,mr_small);
      extern void  mirexit(_MIPTO_ );
      extern int   exsign(flash);
      extern void  insign(int,flash);
      extern int   getdig(_MIPT_ big,int);  
      extern int   numdig(_MIPT_ big);        
      extern void  putdig(_MIPT_ int,big,int);
      extern void  copy(flash,flash);  
      extern void  negify(flash,flash);
      extern void  absol(flash,flash); 
      extern int   size(big);
      extern int   mr_compare(big,big);
      extern void  add(_MIPT_ big,big,big);
      extern void  subtract(_MIPT_ big,big,big);
      extern void  incr(_MIPT_ big,int,big);    
      extern void  decr(_MIPT_ big,int,big);    
      extern void  premult(_MIPT_ big,int,big); 
      extern int   subdiv(_MIPT_ big,int,big);  
      extern BOOL  subdivisible(_MIPT_ big,int);
      extern int   remain(_MIPT_ big,int);   
      extern void  bytes_to_big(_MIPT_ int,const char *,big);
      extern int   big_to_bytes(_MIPT_ int,big,char *,BOOL);
      extern mr_small normalise(_MIPT_ big,big);
      extern void  multiply(_MIPT_ big,big,big);
      extern void  fft_mult(_MIPT_ big,big,big);
      extern BOOL  fastmultop(_MIPT_ int,big,big,big);
      extern void  divide(_MIPT_ big,big,big);  
      extern BOOL  divisible(_MIPT_ big,big);   
      extern void  mad(_MIPT_ big,big,big,big,big,big);
      extern int   instr(_MIPT_ flash,char *);
      extern int   otstr(_MIPT_ flash,char *);
      extern int   cinstr(_MIPT_ flash,char *);
      extern int   cotstr(_MIPT_ flash,char *);
      extern epoint* epoint_init(_MIPTO_ );
      extern epoint* epoint_init_mem(_MIPT_ char *,int);
      extern void* ecp_memalloc(_MIPT_ int);
      void ecp_memkill(_MIPT_ char *,int);
      BOOL init_big_from_rom(big,int,const mr_small *,int ,int *);
      BOOL init_point_from_rom(epoint *,int,const mr_small *,int,int *);
      
      #ifndef MR_NO_FILE_IO
      
      extern int   innum(_MIPT_ flash,FILE *);          
      extern int   otnum(_MIPT_ flash,FILE *);
      extern int   cinnum(_MIPT_ flash,FILE *);
      extern int   cotnum(_MIPT_ flash,FILE *);
      
      #endif
      
      /* Group 2 - Advanced arithmetic routines */
      
      extern mr_small smul(mr_small,mr_small,mr_small);
      extern mr_small spmd(mr_small,mr_small,mr_small); 
      extern mr_small invers(mr_small,mr_small);
      extern mr_small sqrmp(mr_small,mr_small);
      extern int      jac(mr_small,mr_small);
      
      extern void  gprime(_MIPT_ int);
      extern int   jack(_MIPT_ big,big);
      extern int   egcd(_MIPT_ big,big,big);
      extern int   xgcd(_MIPT_ big,big,big,big,big);
      extern int   invmodp(_MIPT_ big,big,big);
      extern int   logb2(_MIPT_ big);
      extern int   hamming(_MIPT_ big);
      extern void  expb2(_MIPT_ int,big);
      extern void  bigbits(_MIPT_ int,big);
      extern void  expint(_MIPT_ int,int,big);
      extern void  sftbit(_MIPT_ big,int,big);
      extern void  power(_MIPT_ big,long,big,big);
      extern void  powmod(_MIPT_ big,big,big,big);
      extern void  powmod2(_MIPT_ big,big,big,big,big,big);
      extern void  powmodn(_MIPT_ int,big *,big *,big,big);
      extern int   powltr(_MIPT_ int,big,big,big);
      extern BOOL  double_inverse(_MIPT_ big,big,big,big,big);
      extern BOOL  multi_inverse(_MIPT_ int,big*,big,big*);
      extern void  lucas(_MIPT_ big,big,big,big,big);
      extern BOOL  nroot(_MIPT_ big,int,big);
      extern BOOL  sqroot(_MIPT_ big,big,big);
      extern void  bigrand(_MIPT_ big,big);
      extern void  bigdig(_MIPT_ int,int,big);
      extern int   trial_division(_MIPT_ big,big);
      extern BOOL  isprime(_MIPT_ big);
      extern BOOL  nxprime(_MIPT_ big,big);
      extern BOOL  nxsafeprime(_MIPT_ int,int,big,big);
      extern BOOL  crt_init(_MIPT_ big_chinese *,int,big *);
      extern void  crt(_MIPT_ big_chinese *,big *,big);
      extern void  crt_end(big_chinese *);
      extern BOOL  scrt_init(_MIPT_ small_chinese *,int,mr_utype *);    
      extern void  scrt(_MIPT_ small_chinese*,mr_utype *,big); 
      extern void  scrt_end(small_chinese *);
      #ifndef MR_STATIC
      extern BOOL  brick_init(_MIPT_ brick *,big,big,int,int);
      extern void  brick_end(brick *);
      #else
      extern void  brick_init(brick *,const mr_small *,big,int,int);
      #endif
      extern void  pow_brick(_MIPT_ brick *,big,big);
      #ifndef MR_STATIC
      extern BOOL  ebrick_init(_MIPT_ ebrick *,big,big,big,big,big,int,int);
      extern void  ebrick_end(ebrick *);
      #else
      extern void  ebrick_init(ebrick *,const mr_small *,big,big,big,int,int);
      #endif
      extern int   mul_brick(_MIPT_ ebrick*,big,big,big);
      #ifndef MR_STATIC
      extern BOOL  ebrick2_init(_MIPT_ ebrick2 *,big,big,big,big,int,int,int,int,int,int);
      extern void  ebrick2_end(ebrick2 *);
      #else
      extern void  ebrick2_init(ebrick2 *,const mr_small *,big,big,int,int,int,int,int,int);
      #endif
      extern int   mul2_brick(_MIPT_ ebrick2*,big,big,big);
      
      /* Montgomery stuff */
      
      extern mr_small prepare_monty(_MIPT_ big);
      extern void  kill_monty(_MIPTO_ );
      extern void  nres(_MIPT_ big,big);        
      extern void  redc(_MIPT_ big,big);        
      
      extern void  nres_negate(_MIPT_ big,big);
      extern void  nres_modadd(_MIPT_ big,big,big);  
      extern void  nres_modsub(_MIPT_ big,big,big); 
      extern void  nres_lazy(_MIPT_ big,big,big,big,big,big);
      extern void  nres_complex(_MIPT_ big,big,big,big);
      extern void  nres_double_modadd(_MIPT_ big,big,big);    
      extern void  nres_double_modsub(_MIPT_ big,big,big); 
      extern void  nres_premult(_MIPT_ big,int,big);
      extern void  nres_modmult(_MIPT_ big,big,big);    
      extern int   nres_moddiv(_MIPT_ big,big,big);     
      extern void  nres_dotprod(_MIPT_ int,big *,big *,big);
      extern void  nres_powmod(_MIPT_ big,big,big);     
      extern void  nres_powltr(_MIPT_ int,big,big);     
      extern void  nres_powmod2(_MIPT_ big,big,big,big,big);     
      extern void  nres_powmodn(_MIPT_ int,big *,big *,big);
      extern BOOL  nres_sqroot(_MIPT_ big,big);
      extern void  nres_lucas(_MIPT_ big,big,big,big);
      extern BOOL  nres_double_inverse(_MIPT_ big,big,big,big);
      extern BOOL  nres_multi_inverse(_MIPT_ int,big *,big *);
      extern void  nres_div2(_MIPT_ big,big);
      extern void  nres_div3(_MIPT_ big,big);
      extern void  nres_div5(_MIPT_ big,big);
      
      extern void  shs_init(sha *);
      extern void  shs_process(sha *,int);
      extern void  shs_hash(sha *,char *);
      
      extern void  shs256_init(sha256 *);
      extern void  shs256_process(sha256 *,int);
      extern void  shs256_hash(sha256 *,char *);
      
      #ifdef mr_unsign64
      
      extern void  shs512_init(sha512 *);
      extern void  shs512_process(sha512 *,int);
      extern void  shs512_hash(sha512 *,char *);
      
      extern void  shs384_init(sha384 *);
      extern void  shs384_process(sha384 *,int);
      extern void  shs384_hash(sha384 *,char *);
      
      extern void  sha3_init(sha3 *,int);
      extern void  sha3_process(sha3 *,int);
      extern void  sha3_hash(sha3 *,char *);
      
      #endif
      
      extern BOOL  aes_init(aes *,int,int,char *,char *);
      extern void  aes_getreg(aes *,char *);
      extern void  aes_ecb_encrypt(aes *,MR_BYTE *);
      extern void  aes_ecb_decrypt(aes *,MR_BYTE *);
      extern mr_unsign32 aes_encrypt(aes *,char *);
      extern mr_unsign32 aes_decrypt(aes *,char *);
      extern void  aes_reset(aes *,int,char *);
      extern void  aes_end(aes *);
      
      extern void  gcm_init(gcm *,int,char *,int,char *);
      extern BOOL  gcm_add_header(gcm *,char *,int);
      extern BOOL  gcm_add_cipher(gcm *,int,char *,int,char *);
      extern void  gcm_finish(gcm *,char *);
      
      extern void FPE_encrypt(int ,aes *,mr_unsign32 ,mr_unsign32 ,char *,int);
      extern void FPE_decrypt(int ,aes *,mr_unsign32 ,mr_unsign32 ,char *,int);
      
      extern void  strong_init(csprng *,int,char *,mr_unsign32);   
      extern int   strong_rng(csprng *);
      extern void  strong_bigrand(_MIPT_ csprng *,big,big);
      extern void  strong_bigdig(_MIPT_ csprng *,int,int,big);
      extern void  strong_kill(csprng *);
      
      /* special modular multipliers */
      
      extern void  comba_mult(big,big,big);
      extern void  comba_square(big,big);
      extern void  comba_redc(_MIPT_ big,big);
      extern void  comba_modadd(_MIPT_ big,big,big);
      extern void  comba_modsub(_MIPT_ big,big,big);
      extern void  comba_double_modadd(_MIPT_ big,big,big);
      extern void  comba_double_modsub(_MIPT_ big,big,big);
      extern void  comba_negate(_MIPT_ big,big);
      extern void  comba_add(big,big,big);
      extern void  comba_sub(big,big,big);
      extern void  comba_double_add(big,big,big);
      extern void  comba_double_sub(big,big,big);
      
      extern void  comba_mult2(_MIPT_ big,big,big);
      
      extern void  fastmodmult(_MIPT_ big,big,big);
      extern void  fastmodsquare(_MIPT_ big,big);   
      
      extern void  kcm_mul(_MIPT_ big,big,big);
      extern void  kcm_sqr(_MIPT_ big,big); 
      extern void  kcm_redc(_MIPT_ big,big); 
      
      extern void  kcm_multiply(_MIPT_ int,big,big,big);
      extern void  kcm_square(_MIPT_ int,big,big);
      extern BOOL  kcm_top(_MIPT_ int,big,big,big);
      
      /* elliptic curve stuff */
      
      extern BOOL point_at_infinity(epoint *);
      
      extern void mr_jsf(_MIPT_ big,big,big,big,big,big);
      
      extern void ecurve_init(_MIPT_ big,big,big,int);
      extern int  ecurve_add(_MIPT_ epoint *,epoint *);
      extern int  ecurve_sub(_MIPT_ epoint *,epoint *);
      extern void ecurve_double_add(_MIPT_ epoint *,epoint *,epoint *,epoint *,big *,big *);
      extern void ecurve_multi_add(_MIPT_ int,epoint **,epoint **);
      extern void ecurve_double(_MIPT_ epoint*);
      extern int  ecurve_mult(_MIPT_ big,epoint *,epoint *);
      extern void ecurve_mult2(_MIPT_ big,epoint *,big,epoint *,epoint *);
      extern void ecurve_multn(_MIPT_ int,big *,epoint**,epoint *);
      
      extern BOOL epoint_x(_MIPT_ big);
      extern BOOL epoint_set(_MIPT_ big,big,int,epoint*);
      extern int  epoint_get(_MIPT_ epoint*,big,big);
      extern void epoint_getxyz(_MIPT_ epoint *,big,big,big);
      extern BOOL epoint_norm(_MIPT_ epoint *);
      extern BOOL epoint_multi_norm(_MIPT_ int,big *,epoint **);  
      extern void epoint_free(epoint *);
      extern void epoint_copy(epoint *,epoint *);
      extern BOOL epoint_comp(_MIPT_ epoint *,epoint *);
      extern void epoint_negate(_MIPT_ epoint *);
      
      extern BOOL ecurve2_init(_MIPT_ int,int,int,int,big,big,BOOL,int);
      extern big  ecurve2_add(_MIPT_ epoint *,epoint *);
      extern big  ecurve2_sub(_MIPT_ epoint *,epoint *);
      extern void ecurve2_multi_add(_MIPT_ int,epoint **,epoint **);
      extern void ecurve2_mult(_MIPT_ big,epoint *,epoint *);
      extern void ecurve2_mult2(_MIPT_ big,epoint *,big,epoint *,epoint *);
      extern void ecurve2_multn(_MIPT_ int,big *,epoint**,epoint *);
      
      extern epoint* epoint2_init(_MIPTO_ );
      extern BOOL epoint2_set(_MIPT_ big,big,int,epoint*);
      extern int  epoint2_get(_MIPT_ epoint*,big,big);
      extern void epoint2_getxyz(_MIPT_ epoint *,big,big,big);
      extern int  epoint2_norm(_MIPT_ epoint *);
      extern void epoint2_free(epoint *);
      extern void epoint2_copy(epoint *,epoint *);
      extern BOOL epoint2_comp(_MIPT_ epoint *,epoint *);
      extern void epoint2_negate(_MIPT_ epoint *);
      
      /* GF(2) stuff */
      
      extern BOOL prepare_basis(_MIPT_ int,int,int,int,BOOL);
      extern int parity2(big);
      extern BOOL multi_inverse2(_MIPT_ int,big *,big *);
      extern void add2(big,big,big);
      extern void incr2(big,int,big);
      extern void reduce2(_MIPT_ big,big);
      extern void multiply2(_MIPT_ big,big,big);
      extern void modmult2(_MIPT_ big,big,big);
      extern void modsquare2(_MIPT_ big,big);
      extern void power2(_MIPT_ big,int,big);
      extern void sqroot2(_MIPT_ big,big);
      extern void halftrace2(_MIPT_ big,big);
      extern BOOL quad2(_MIPT_ big,big);
      extern BOOL inverse2(_MIPT_ big,big);
      extern void karmul2(int,mr_small *,mr_small *,mr_small *,mr_small *);
      extern void karmul2_poly(_MIPT_ int,big *,big *,big *,big *);
      extern void karmul2_poly_upper(_MIPT_ int,big *,big *,big *,big *);
      extern void gf2m_dotprod(_MIPT_ int,big *,big *,big);
      extern int  trace2(_MIPT_ big);
      extern void rand2(_MIPT_ big);
      extern void gcd2(_MIPT_ big,big,big);
      extern int degree2(big);
      
      /* zzn2 stuff */
      
      extern BOOL zzn2_iszero(zzn2 *);
      extern BOOL zzn2_isunity(_MIPT_ zzn2 *);
      extern void zzn2_from_int(_MIPT_ int,zzn2 *);
      extern void zzn2_from_ints(_MIPT_ int,int,zzn2 *);
      extern void zzn2_copy(zzn2 *,zzn2 *);
      extern void zzn2_zero(zzn2 *);
      extern void zzn2_negate(_MIPT_ zzn2 *,zzn2 *);
      extern void zzn2_conj(_MIPT_ zzn2 *,zzn2 *);
      extern void zzn2_add(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
      extern void zzn2_sub(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
      extern void zzn2_smul(_MIPT_ zzn2 *,big,zzn2 *);
      extern void zzn2_mul(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
      extern void zzn2_sqr(_MIPT_ zzn2 *,zzn2 *);
      extern void zzn2_inv(_MIPT_ zzn2 *);
      extern void zzn2_timesi(_MIPT_ zzn2 *);
      extern void zzn2_powl(_MIPT_ zzn2 *,big,zzn2 *);
      extern void zzn2_from_zzns(big,big,zzn2 *);
      extern void zzn2_from_bigs(_MIPT_ big,big,zzn2 *);
      extern void zzn2_from_zzn(big,zzn2 *);
      extern void zzn2_from_big(_MIPT_ big, zzn2 *);
      extern void zzn2_sadd(_MIPT_ zzn2 *,big,zzn2 *);
      extern void zzn2_ssub(_MIPT_ zzn2 *,big,zzn2 *);
      extern void zzn2_div2(_MIPT_ zzn2 *);
      extern void zzn2_div3(_MIPT_ zzn2 *);
      extern void zzn2_div5(_MIPT_ zzn2 *);
      extern void zzn2_imul(_MIPT_ zzn2 *,int,zzn2 *);
      extern BOOL zzn2_compare(zzn2 *,zzn2 *);
      extern void zzn2_txx(_MIPT_ zzn2 *);
      extern void zzn2_txd(_MIPT_ zzn2 *);
      extern BOOL zzn2_sqrt(_MIPT_ zzn2 *,zzn2 *);
      extern BOOL zzn2_qr(_MIPT_ zzn2 *);
      extern BOOL zzn2_multi_inverse(_MIPT_ int,zzn2 *,zzn2 *);
      
      
      /* zzn3 stuff */
      
      extern void zzn3_set(_MIPT_ int,big);
      extern BOOL zzn3_iszero(zzn3 *);
      extern BOOL zzn3_isunity(_MIPT_ zzn3 *);
      extern void zzn3_from_int(_MIPT_ int,zzn3 *);
      extern void zzn3_from_ints(_MIPT_ int,int,int,zzn3 *);
      extern void zzn3_copy(zzn3 *,zzn3 *);
      extern void zzn3_zero(zzn3 *);
      extern void zzn3_negate(_MIPT_ zzn3 *,zzn3 *);
      extern void zzn3_powq(_MIPT_ zzn3 *,zzn3 *);
      extern void zzn3_add(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
      extern void zzn3_sub(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
      extern void zzn3_smul(_MIPT_ zzn3 *,big,zzn3 *);
      extern void zzn3_mul(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
      extern void zzn3_inv(_MIPT_ zzn3 *);
      extern void zzn3_timesi(_MIPT_ zzn3 *);
      extern void zzn3_timesi2(_MIPT_ zzn3 *);
      extern void zzn3_powl(_MIPT_ zzn3 *,big,zzn3 *);
      extern void zzn3_from_zzns(big,big,big,zzn3 *);
      extern void zzn3_from_bigs(_MIPT_ big,big,big,zzn3 *);
      extern void zzn3_from_zzn(big,zzn3 *);
      extern void zzn3_from_zzn_1(big,zzn3 *);
      extern void zzn3_from_zzn_2(big,zzn3 *);
      extern void zzn3_from_big(_MIPT_ big, zzn3 *);
      extern void zzn3_sadd(_MIPT_ zzn3 *,big,zzn3 *);
      extern void zzn3_ssub(_MIPT_ zzn3 *,big,zzn3 *);
      extern void zzn3_div2(_MIPT_ zzn3 *);
      extern void zzn3_imul(_MIPT_ zzn3 *,int,zzn3 *);
      extern BOOL zzn3_compare(zzn3 *,zzn3 *);
      
      /* zzn4 stuff */
      
      extern BOOL zzn4_iszero(zzn4 *);
      extern BOOL zzn4_isunity(_MIPT_ zzn4 *);
      extern void zzn4_from_int(_MIPT_ int,zzn4 *);
      extern void zzn4_copy(zzn4 *,zzn4 *);
      extern void zzn4_zero(zzn4 *);
      extern void zzn4_negate(_MIPT_ zzn4 *,zzn4 *);
      extern void zzn4_powq(_MIPT_ zzn2 *,zzn4 *);
      extern void zzn4_add(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
      extern void zzn4_sub(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
      extern void zzn4_smul(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
      extern void zzn4_sqr(_MIPT_ zzn4 *,zzn4 *);
      extern void zzn4_mul(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
      extern void zzn4_inv(_MIPT_ zzn4 *);
      extern void zzn4_timesi(_MIPT_ zzn4 *);
      extern void zzn4_tx(_MIPT_ zzn4 *);
      extern void zzn4_from_zzn2s(zzn2 *,zzn2 *,zzn4 *);
      extern void zzn4_from_zzn2(zzn2 *,zzn4 *);
      extern void zzn4_from_zzn2h(zzn2 *,zzn4 *);
      extern void zzn4_from_zzn(big,zzn4 *);
      extern void zzn4_from_big(_MIPT_ big , zzn4 *);
      extern void zzn4_sadd(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
      extern void zzn4_ssub(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
      extern void zzn4_div2(_MIPT_ zzn4 *);
      extern void zzn4_conj(_MIPT_ zzn4 *,zzn4 *);
      extern void zzn4_imul(_MIPT_ zzn4 *,int,zzn4 *);
      extern void zzn4_lmul(_MIPT_ zzn4 *,big,zzn4 *);
      extern BOOL zzn4_compare(zzn4 *,zzn4 *);
      
      /* ecn2 stuff */
      
      extern BOOL ecn2_iszero(ecn2 *);
      extern void ecn2_copy(ecn2 *,ecn2 *);
      extern void ecn2_zero(ecn2 *);
      extern BOOL ecn2_compare(_MIPT_ ecn2 *,ecn2 *);
      extern void ecn2_norm(_MIPT_ ecn2 *);
      extern void ecn2_get(_MIPT_ ecn2 *,zzn2 *,zzn2 *,zzn2 *);
      extern void ecn2_getxy(ecn2 *,zzn2 *,zzn2 *);
      extern void ecn2_getx(ecn2 *,zzn2 *);
      extern void ecn2_getz(_MIPT_ ecn2 *,zzn2 *);
      extern void ecn2_rhs(_MIPT_ zzn2 *,zzn2 *);
      extern BOOL ecn2_set(_MIPT_ zzn2 *,zzn2 *,ecn2 *);
      extern BOOL ecn2_setx(_MIPT_ zzn2 *,ecn2 *);
      extern void ecn2_setxyz(_MIPT_ zzn2 *,zzn2 *,zzn2 *,ecn2 *);
      extern void ecn2_negate(_MIPT_ ecn2 *,ecn2 *);
      extern BOOL ecn2_add3(_MIPT_ ecn2 *,ecn2 *,zzn2 *,zzn2 *,zzn2 *);
      extern BOOL ecn2_add2(_MIPT_ ecn2 *,ecn2 *,zzn2 *,zzn2 *);
      extern BOOL ecn2_add1(_MIPT_ ecn2 *,ecn2 *,zzn2 *);
      extern BOOL ecn2_add(_MIPT_ ecn2 *,ecn2 *);
      extern BOOL ecn2_sub(_MIPT_ ecn2 *,ecn2 *);
      extern BOOL ecn2_add_sub(_MIPT_ ecn2 *,ecn2 *,ecn2 *,ecn2 *);
      extern int ecn2_mul2_jsf(_MIPT_ big,ecn2 *,big,ecn2 *,ecn2 *);
      extern int ecn2_mul(_MIPT_ big,ecn2 *);
      extern void ecn2_psi(_MIPT_ zzn2 *,ecn2 *);
      extern BOOL ecn2_multi_norm(_MIPT_ int ,zzn2 *,ecn2 *);
      extern int ecn2_mul4_gls_v(_MIPT_ big *,int,ecn2 *,big *,ecn2 *,zzn2 *,ecn2 *);
      extern int ecn2_muln_engine(_MIPT_ int,int,int,int,big *,big *,big *,big *,ecn2 *,ecn2 *,ecn2 *);
      extern void ecn2_precomp_gls(_MIPT_ int,BOOL,ecn2 *,zzn2 *,ecn2 *);
      extern int ecn2_mul2_gls(_MIPT_ big *,ecn2 *,zzn2 *,ecn2 *);
      extern void ecn2_precomp(_MIPT_ int,BOOL,ecn2 *,ecn2 *);
      extern int ecn2_mul2(_MIPT_ big,int,ecn2 *,big,ecn2 *,ecn2 *);
      #ifndef MR_STATIC
      extern BOOL ecn2_brick_init(_MIPT_ ebrick *,zzn2 *,zzn2 *,big,big,big,int,int);
      extern void ecn2_brick_end(ebrick *);
      #else
      extern void ebrick_init(ebrick *,const mr_small *,big,big,big,int,int);
      #endif
      extern void ecn2_mul_brick_gls(_MIPT_ ebrick *B,big *,zzn2 *,zzn2 *,zzn2 *);
      extern void ecn2_multn(_MIPT_ int,big *,ecn2 *,ecn2 *);
      extern void ecn2_mult4(_MIPT_ big *,ecn2 *,ecn2 *);
      /* Group 3 - Floating-slash routines      */
      
      #ifdef MR_FLASH
      extern void  fpack(_MIPT_ big,big,flash);
      extern void  numer(_MIPT_ flash,big);    
      extern void  denom(_MIPT_ flash,big);    
      extern BOOL  fit(big,big,int);    
      extern void  build(_MIPT_ flash,int (*)(_MIPT_ big,int));
      extern void  mround(_MIPT_ big,big,flash);         
      extern void  flop(_MIPT_ flash,flash,int *,flash);
      extern void  fmul(_MIPT_ flash,flash,flash);      
      extern void  fdiv(_MIPT_ flash,flash,flash);      
      extern void  fadd(_MIPT_ flash,flash,flash);      
      extern void  fsub(_MIPT_ flash,flash,flash);      
      extern int   fcomp(_MIPT_ flash,flash);           
      extern void  fconv(_MIPT_ int,int,flash);         
      extern void  frecip(_MIPT_ flash,flash);          
      extern void  ftrunc(_MIPT_ flash,big,flash);      
      extern void  fmodulo(_MIPT_ flash,flash,flash);
      extern void  fpmul(_MIPT_ flash,int,int,flash);   
      extern void  fincr(_MIPT_ flash,int,int,flash);   
      extern void  dconv(_MIPT_ double,flash);          
      extern double fdsize(_MIPT_ flash);
      extern void  frand(_MIPT_ flash);
      
      /* Group 4 - Advanced Flash routines */ 
      
      extern void  fpower(_MIPT_ flash,int,flash);
      extern BOOL  froot(_MIPT_ flash,int,flash); 
      extern void  fpi(_MIPT_ flash);             
      extern void  fexp(_MIPT_ flash,flash);      
      extern void  flog(_MIPT_ flash,flash);      
      extern void  fpowf(_MIPT_ flash,flash,flash);
      extern void  ftan(_MIPT_ flash,flash); 
      extern void  fatan(_MIPT_ flash,flash);
      extern void  fsin(_MIPT_ flash,flash); 
      extern void  fasin(_MIPT_ flash,flash);
      extern void  fcos(_MIPT_ flash,flash);  
      extern void  facos(_MIPT_ flash,flash); 
      extern void  ftanh(_MIPT_ flash,flash); 
      extern void  fatanh(_MIPT_ flash,flash);
      extern void  fsinh(_MIPT_ flash,flash); 
      extern void  fasinh(_MIPT_ flash,flash);
      extern void  fcosh(_MIPT_ flash,flash); 
      extern void  facosh(_MIPT_ flash,flash);
      #endif
      
      
      /* Test predefined Macros to determine compiler type, and hopefully 
         selectively use fast in-line assembler (or other compiler specific
         optimisations. Note I am unsure of Microsoft version numbers. So I 
         suspect are Microsoft.
      
         Note: It seems to be impossible to get the 16-bit Microsoft compiler
         to allow inline 32-bit op-codes. So I suspect that INLINE_ASM == 2 will
         never work with it. Pity. 
      
      #define INLINE_ASM 1    -> generates 8086 inline assembly
      #define INLINE_ASM 2    -> generates mixed 8086 & 80386 inline assembly,
                                 so you can get some benefit while running in a 
                                 16-bit environment on 32-bit hardware (DOS, Windows
                                 3.1...)
      #define INLINE_ASM 3    -> generate true 80386 inline assembly - (Using DOS 
                                 extender, Windows '95/Windows NT)
                                 Actually optimised for Pentium
      
      #define INLINE_ASM 4    -> 80386 code in the GNU style (for (DJGPP)
      
      Small, medium, compact and large memory models are supported for the
      first two of the above.
                              
      */
      
      /* To allow for inline assembly */
      
      #ifdef __GNUC__ 
          #define ASM __asm__ __volatile__
      #endif
      
      #ifdef __TURBOC__ 
          #define ASM asm
      #endif
      
      #ifdef _MSC_VER
          #define ASM _asm
      #endif
      
      #ifndef MR_NOASM
      
      /* Win64 - inline the time critical function */
      #ifndef MR_NO_INTRINSICS
      	#ifdef MR_WIN64
      		#define muldvd(a,b,c,rp) (*(rp)=_umul128((a),(b),&(tm)),*(rp)+=(c),tm+=(*(rp)<(c)),tm)
      		#define muldvd2(a,b,c,rp) (tr=_umul128((a),(b),&(tm)),tr+=(*(c)),tm+=(tr<(*(c))),tr+=(*(rp)),tm+=(tr<(*(rp))),*(rp)=tr,*(c)=tm)
      	#endif
      
      /* Itanium - inline the time-critical functions */
      
          #ifdef MR_ITANIUM
              #define muldvd(a,b,c,rp)  (tm=_m64_xmahu((a),(b),(c)),*(rp)=_m64_xmalu((a),(b),(c)),tm)
              #define muldvd2(a,b,c,rp) (tm=_m64_xmalu((a),(b),(*(c))),*(c)=_m64_xmahu((a),(b),(*(c))),tm+=*(rp),*(c)+=(tm<*(rp)),*(rp)=tm)
          #endif
      #endif
      /*
      
      SSE2 code. Works as for itanium - but in fact it is slower than the regular code so not recommended
      Would require a call to emmintrin.h or xmmintrin.h, and an __m128i variable tm to be declared in effected 
      functions. But it works!
      
      	#define muldvd(a,b,c,rp)  (tm=_mm_add_epi64(_mm_mul_epu32(_mm_cvtsi32_si128((a)),_mm_cvtsi32_si128((b))),_mm_cvtsi32_si128((c))),*(rp)=_mm_cvtsi128_si32(tm),_mm_cvtsi128_si32(_mm_shuffle_epi32(tm,_MM_SHUFFLE(3,2,0,1))) )
      	#define muldvd2(a,b,c,rp) (tm=_mm_add_epi64(_mm_add_epi64(_mm_mul_epu32(_mm_cvtsi32_si128((a)),_mm_cvtsi32_si128((b))),_mm_cvtsi32_si128(*(c))),_mm_cvtsi32_si128(*(rp))),*(rp)=_mm_cvtsi128_si32(tm),*(c)=_mm_cvtsi128_si32( _mm_shuffle_epi32(tm,_MM_SHUFFLE(3,2,0,1))  )
      */
      
      /* Borland C/Turbo C */
      
          #ifdef __TURBOC__ 
          #ifndef __HUGE__
              #if defined(__COMPACT__) || defined(__LARGE__)
                  #define MR_LMM
              #endif
      
              #if MIRACL==16
                  #define INLINE_ASM 1
              #endif
      
              #if __TURBOC__>=0x410
                  #if MIRACL==32
      #if defined(__SMALL__) || defined(__MEDIUM__) || defined(__LARGE__) || defined(__COMPACT__)
                          #define INLINE_ASM 2
                      #else
                          #define INLINE_ASM 3
                      #endif
                  #endif
              #endif
          #endif
          #endif
      
      /* Microsoft C */
      
          #ifdef _MSC_VER
          #ifndef M_I86HM        
              #if defined(M_I86CM) || defined(M_I86LM)
                  #define MR_LMM
              #endif
              #if _MSC_VER>=600
                  #if _MSC_VER<1200
                      #if MIRACL==16
                          #define INLINE_ASM 1
                      #endif
                  #endif
              #endif
              #if _MSC_VER>=1000
      			#if _MSC_VER<1500
      				#if MIRACL==32
      					#define INLINE_ASM 3
      				#endif
      			#endif
              #endif     
          #endif       
          #endif
      
      /* DJGPP GNU C */
      
          #ifdef __GNUC__
          #ifdef i386
              #if MIRACL==32
                  #define INLINE_ASM 4
              #endif
          #endif
          #endif
      
      #endif
      
      
      
      /* 
         The following contribution is from Tielo Jongmans, Netherlands
         These inline assembler routines are suitable for Watcom 10.0 and up 
      
         Added into miracl.h.  Notice the override of the original declarations 
         of these routines, which should be removed.
      
         The following pragma is optional, it is dangerous, but it saves a 
         calling sequence
      */
      
      /*
      
      #pragma off (check_stack);
      
      extern unsigned int muldiv(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int *);
      #pragma aux muldiv=                 \
             "mul     edx"                \
             "add     eax,ebx"            \
             "adc     edx,0"              \
             "div     ecx"                \
             "mov     [esi],edx"          \
          parm [eax] [edx] [ebx] [ecx] [esi]   \
          value [eax]                     \
          modify [eax edx];
      
      extern unsigned int muldvm(unsigned int, unsigned int, unsigned int, unsigned int *);
      #pragma aux muldvm=                 \
              "div     ebx"               \
              "mov     [ecx],edx"         \
          parm [edx] [eax] [ebx] [ecx]    \
          value [eax]                     \
          modify [eax edx];
      
      extern unsigned int muldvd(unsigned int, unsigned int, unsigned int, unsigned int *);
      #pragma aux muldvd=                 \
              "mul     edx"               \
              "add     eax,ebx"           \
              "adc     edx,0"             \
              "mov     [ecx],eax"         \
              "mov     eax,edx"           \
          parm [eax] [edx] [ebx] [ecx]    \
          value [eax]                     \
          modify [eax edx];
      
      */
      
      
      #endif
      
      
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat miracl.h
      /***************************************************************************
                                                                                 *
      Copyright 2013 CertiVox UK Ltd.                                           *
                                                                                 *
      This file is part of CertiVox MIRACL Crypto SDK.                           *
                                                                                 *
      The CertiVox MIRACL Crypto SDK provides developers with an                 *
      extensive and efficient set of cryptographic functions.                    *
      For further information about its features and functionalities please      *
      refer to http://www.certivox.com                                           *
                                                                                 *
      * The CertiVox MIRACL Crypto SDK is free software: you can                 *
        redistribute it and/or modify it under the terms of the                  *
        GNU Affero General Public License as published by the                    *
        Free Software Foundation, either version 3 of the License,               *
        or (at your option) any later version.                                   *
                                                                                 *
      * The CertiVox MIRACL Crypto SDK is distributed in the hope                *
        that it will be useful, but WITHOUT ANY WARRANTY; without even the       *
        implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
        See the GNU Affero General Public License for more details.              *
                                                                                 *
      * You should have received a copy of the GNU Affero General Public         *
        License along with CertiVox MIRACL Crypto SDK.                           *
        If not, see <http://www.gnu.org/licenses/>.                              *
                                                                                 *
      You can be released from the requirements of the license by purchasing     *
      a commercial license. Buying such a license is mandatory as soon as you    *
      develop commercial activities involving the CertiVox MIRACL Crypto SDK     *
      without disclosing the source code of your own applications, or shipping   *
      the CertiVox MIRACL Crypto SDK with a closed source product.               *
                                                                                 *
      ***************************************************************************/
      
      #ifndef MIRACL_H
      #define MIRACL_H
      
      /*
       *   main MIRACL header - miracl.h.
       */
      
      #include "mirdef.h"
      
      /* Some modifiable defaults... */
      
      /* Use a smaller buffer if space is limited, don't be so wasteful! */
      
      #ifdef MR_STATIC
      #define MR_DEFAULT_BUFFER_SIZE 260
      #else
      #define MR_DEFAULT_BUFFER_SIZE 1024
      #endif
      
      /* see mrgf2m.c */
      
      #ifndef MR_KARATSUBA
      #define MR_KARATSUBA 2
      #endif
      
      #ifndef MR_DOUBLE_BIG
      
      #ifdef MR_KCM
        #ifdef MR_FLASH
          #define MR_SPACES 32
        #else
          #define MR_SPACES 31
        #endif
      #else
        #ifdef MR_FLASH
          #define MR_SPACES 28
        #else
          #define MR_SPACES 27
        #endif
      #endif
      
      #else
      
      #ifdef MR_KCM
        #ifdef MR_FLASH
          #define MR_SPACES 44
        #else
          #define MR_SPACES 43
        #endif
      #else
        #ifdef MR_FLASH
          #define MR_SPACES 40
        #else
          #define MR_SPACES 39
        #endif
      #endif
      
      #endif
      
      /* To avoid name clashes - undefine this */
      
      /* #define compare mr_compare */
      
      #ifdef MR_AVR
      #include <avr/pgmspace.h>
      #endif
      
      /* size of bigs and elliptic curve points for memory allocation from stack or heap */
      
      #define MR_ROUNDUP(a,b) ((a)-1)/(b)+1
      
      #define MR_SL sizeof(long)
      
      #ifdef MR_STATIC
      
      #define MR_SIZE (((sizeof(struct bigtype)+(MR_STATIC+2)*sizeof(mr_utype))-1)/MR_SL+1)*MR_SL
      #define MR_BIG_RESERVE(n) ((n)*MR_SIZE+MR_SL)
      
      #ifdef MR_AFFINE_ONLY
      #define MR_ESIZE (((sizeof(epoint)+MR_BIG_RESERVE(2))-1)/MR_SL+1)*MR_SL
      #else
      #define MR_ESIZE (((sizeof(epoint)+MR_BIG_RESERVE(3))-1)/MR_SL+1)*MR_SL
      #endif
      #define MR_ECP_RESERVE(n) ((n)*MR_ESIZE+MR_SL)
      
      #define MR_ESIZE_A (((sizeof(epoint)+MR_BIG_RESERVE(2))-1)/MR_SL+1)*MR_SL
      #define MR_ECP_RESERVE_A(n) ((n)*MR_ESIZE_A+MR_SL)
      
      
      #endif
      
      /* useful macro to convert size of big in words, to size of required structure */
      
      #define mr_size(n) (((sizeof(struct bigtype)+((n)+2)*sizeof(mr_utype))-1)/MR_SL+1)*MR_SL
      #define mr_big_reserve(n,m) ((n)*mr_size(m)+MR_SL)
      
      #define mr_esize_a(n) (((sizeof(epoint)+mr_big_reserve(2,(n)))-1)/MR_SL+1)*MR_SL 
      #define mr_ecp_reserve_a(n,m) ((n)*mr_esize_a(m)+MR_SL)
      
      #ifdef MR_AFFINE_ONLY
      #define mr_esize(n) (((sizeof(epoint)+mr_big_reserve(2,(n)))-1)/MR_SL+1)*MR_SL 
      #else
      #define mr_esize(n) (((sizeof(epoint)+mr_big_reserve(3,(n)))-1)/MR_SL+1)*MR_SL 
      #endif
      #define mr_ecp_reserve(n,m) ((n)*mr_esize(m)+MR_SL)
      
      
      /* if basic library is static, make sure and use static C++ */
      
      #ifdef MR_STATIC
       #ifndef BIGS
        #define BIGS MR_STATIC
       #endif
       #ifndef ZZNS
        #define ZZNS MR_STATIC
       #endif
       #ifndef GF2MS
        #define GF2MS MR_STATIC
       #endif
      #endif
      
      #ifdef __ia64__
      #if MIRACL==64
      #define MR_ITANIUM
      #include <ia64intrin.h>
      #endif
      #endif
      
      #ifdef _M_X64
      #ifdef _WIN64
      #if MIRACL==64
      #define MR_WIN64
      #include <intrin.h>
      #endif
      #endif
      #endif
      
      #ifndef MR_NO_FILE_IO
      #include <stdio.h>
      #endif
                     /* error returns */
      
      #define MR_ERR_BASE_TOO_BIG       1
      #define MR_ERR_DIV_BY_ZERO        2
      #define MR_ERR_OVERFLOW           3
      #define MR_ERR_NEG_RESULT         4
      #define MR_ERR_BAD_FORMAT         5
      #define MR_ERR_BAD_BASE           6
      #define MR_ERR_BAD_PARAMETERS     7
      #define MR_ERR_OUT_OF_MEMORY      8
      #define MR_ERR_NEG_ROOT           9
      #define MR_ERR_NEG_POWER         10
      #define MR_ERR_BAD_ROOT          11
      #define MR_ERR_INT_OP            12
      #define MR_ERR_FLASH_OVERFLOW    13
      #define MR_ERR_TOO_BIG           14
      #define MR_ERR_NEG_LOG           15
      #define MR_ERR_DOUBLE_FAIL       16
      #define MR_ERR_IO_OVERFLOW       17
      #define MR_ERR_NO_MIRSYS         18
      #define MR_ERR_BAD_MODULUS       19
      #define MR_ERR_NO_MODULUS        20
      #define MR_ERR_EXP_TOO_BIG       21
      #define MR_ERR_NOT_SUPPORTED     22
      #define MR_ERR_NOT_DOUBLE_LEN    23
      #define MR_ERR_NOT_IRREDUC       24
      #define MR_ERR_NO_ROUNDING       25
      #define MR_ERR_NOT_BINARY        26
      #define MR_ERR_NO_BASIS          27
      #define MR_ERR_COMPOSITE_MODULUS 28
      #define MR_ERR_DEV_RANDOM        29
      
                     /* some useful definitions */
      
      #define forever for(;;)   
      
      #define mr_abs(x)  ((x)<0? (-(x)) : (x))
      
      #ifndef TRUE
        #define TRUE 1
      #endif
      #ifndef FALSE
        #define FALSE 0
      #endif
      
      #define OFF 0
      #define ON 1
      #define PLUS 1
      #define MINUS (-1)
      
      #define M1 (MIRACL-1)
      #define M2 (MIRACL-2)
      #define M3 (MIRACL-3)
      #define M4 (MIRACL-4)
      #define TOPBIT ((mr_small)1<<M1)
      #define SECBIT ((mr_small)1<<M2)
      #define THDBIT ((mr_small)1<<M3)
      #define M8 (MIRACL-8)
      
      #define MR_MAXDEPTH 24
                                    /* max routine stack depth */
      /* big and flash variables consist of an encoded length, *
       * and an array of mr_smalls containing the digits       */
      
      #ifdef MR_COUNT_OPS
      extern int fpm2,fpi2,fpc,fpa,fpx;
      #endif
      
      typedef int BOOL;
      
      #define MR_BYTE unsigned char
      
      #ifdef MR_BITSINCHAR
       #if MR_BITSINCHAR == 8
        #define MR_TOBYTE(x) ((MR_BYTE)(x))
       #else
        #define MR_TOBYTE(x) ((MR_BYTE)((x)&0xFF))
       #endif
      #else
       #define MR_TOBYTE(x) ((MR_BYTE)(x))
      #endif
      
      #ifdef MR_FP
      
        typedef mr_utype mr_small;
        #ifdef mr_dltype
        typedef mr_dltype mr_large;
        #endif
      
        #define MR_DIV(a,b)    (modf((a)/(b),&dres),dres)
      
        #ifdef MR_FP_ROUNDING
      
      /* slightly dicey - for example the optimizer might remove the MAGIC ! */
      
          #define MR_LROUND(a)   ( ( (a) + MR_MAGIC ) - MR_MAGIC )
        #else
          #define MR_LROUND(a)   (modfl((a),&ldres),ldres)
        #endif
      
        #define MR_REMAIN(a,b) ((a)-(b)*MR_DIV((a),(b)))
      
      #else
      
        typedef unsigned mr_utype mr_small;
        #ifdef mr_dltype
          typedef unsigned mr_dltype mr_large;
        #endif
        #ifdef mr_qltype
          typedef unsigned mr_qltype mr_vlarge;
        #endif
      
        #define MR_DIV(a,b)    ((a)/(b))
        #define MR_REMAIN(a,b) ((a)%(b))
        #define MR_LROUND(a)   ((a))
      #endif
      
      
      /* It might be wanted to change this to unsigned long */
      
      typedef unsigned int mr_lentype;
      
      struct bigtype
      {
          mr_lentype len;
          mr_small *w;
      };                
      
      typedef struct bigtype *big;
      typedef big zzn;
      
      typedef big flash;
      
      #define MR_MSBIT ((mr_lentype)1<<(MR_IBITS-1))
      
      #define MR_OBITS (MR_MSBIT-1)
      
      #if MIRACL >= MR_IBITS
      #define MR_TOOBIG (1<<(MR_IBITS-2))
      #else
      #define MR_TOOBIG (1<<(MIRACL-1))
      #endif
      
      #ifdef  MR_FLASH
      #define MR_EBITS (8*sizeof(double) - MR_FLASH)
                                        /* no of Bits per double exponent */
      #define MR_BTS 16
      #define MR_MSK 0xFFFF
      
      #endif
      
      /* Default Hash function output size in bytes */
      #define MR_HASH_BYTES     32
      
      /* Marsaglia & Zaman Random number generator */
      /*         constants      alternatives       */
      #define NK   37           /* 21 */
      #define NJ   24           /*  6 */
      #define NV   14           /*  8 */
      
      /* Use smaller values if memory is precious */
      
      #ifdef mr_dltype
      
      #ifdef MR_LITTLE_ENDIAN 
      #define MR_BOT 0
      #define MR_TOP 1
      #endif
      #ifdef MR_BIG_ENDIAN
      #define MR_BOT 1
      #define MR_TOP 0
      #endif
      
      union doubleword
      {
          mr_large d;
          mr_small h[2];
      };
      
      #endif
      
      /* chinese remainder theorem structures */
      
      typedef struct {
      big *C;
      big *V;
      big *M;
      int NP;
      } big_chinese;
      
      typedef struct {
      mr_utype *C;
      mr_utype *V;
      mr_utype *M;
      int NP;
      } small_chinese;
      
      /* Cryptographically strong pseudo-random number generator */
      
      typedef struct {
      mr_unsign32 ira[NK];  /* random number...   */
      int         rndptr;   /* ...array & pointer */
      mr_unsign32 borrow;
      int pool_ptr;
      char pool[MR_HASH_BYTES];    /* random pool */
      } csprng;
      
      /* secure hash Algorithm structure */
      
      typedef struct {
      mr_unsign32 length[2];
      mr_unsign32 h[8];
      mr_unsign32 w[80];
      } sha256;
      
      typedef sha256 sha;
      
      #ifdef mr_unsign64
      
      typedef struct {
      mr_unsign64 length[2];
      mr_unsign64 h[8];
      mr_unsign64 w[80];
      } sha512;
      
      typedef sha512 sha384;
      
      typedef struct {
      mr_unsign64 length;
      mr_unsign64 S[5][5];
      int rate,len;
      } sha3;
      
      #endif
      
      /* Symmetric Encryption algorithm structure */
      
      #define MR_ECB   0
      #define MR_CBC   1
      #define MR_CFB1  2
      #define MR_CFB2  3
      #define MR_CFB4  5
      #define MR_PCFB1 10
      #define MR_PCFB2 11
      #define MR_PCFB4 13
      #define MR_OFB1  14
      #define MR_OFB2  15
      #define MR_OFB4  17
      #define MR_OFB8  21
      #define MR_OFB16 29
      
      typedef struct {
      int Nk,Nr;
      int mode;
      mr_unsign32 fkey[60];
      mr_unsign32 rkey[60];
      char f[16];
      } aes;
      
      /* AES-GCM suppport. See mrgcm.c */
      
      #define GCM_ACCEPTING_HEADER 0
      #define GCM_ACCEPTING_CIPHER 1
      #define GCM_NOT_ACCEPTING_MORE 2
      #define GCM_FINISHED 3
      #define GCM_ENCRYPTING 0
      #define GCM_DECRYPTING 1
      
      typedef struct {
      mr_unsign32 table[128][4]; /* 2k bytes */
      MR_BYTE stateX[16];
      MR_BYTE Y_0[16];
      mr_unsign32 counter;
      mr_unsign32 lenA[2],lenC[2];
      int status;
      aes a;
      } gcm;
      
                     /* Elliptic curve point status */
      
      #define MR_EPOINT_GENERAL    0
      #define MR_EPOINT_NORMALIZED 1
      #define MR_EPOINT_INFINITY   2
      
      #define MR_NOTSET     0
      #define MR_PROJECTIVE 0
      #define MR_AFFINE     1
      #define MR_BEST       2
      #define MR_TWIST      8
      
      #define MR_OVER       0
      #define MR_ADD        1
      #define MR_DOUBLE     2
      
      /* Twist type */
      
      #define MR_QUADRATIC 2
      #define MR_CUBIC_M   0x3A
      #define MR_CUBIC_D   0x3B
      #define MR_QUARTIC_M 0x4A
      #define MR_QUARTIC_D 0x4B
      #define MR_SEXTIC_M  0x6A
      #define MR_SEXTIC_D  0x6B
      
      
      /* Fractional Sliding Windows for ECC - how much precomputation storage to use ? */
      /* Note that for variable point multiplication there is an optimal value 
         which can be reduced if space is short. For fixed points its a matter of 
         how much ROM is available to store precomputed points.
         We are storing the k points (P,3P,5P,7P,...,[2k-1].P) */
      
      /* These values can be manually tuned for optimal performance... */
      
      #ifdef MR_SMALL_EWINDOW
      #define MR_ECC_STORE_N  3   /* point store for ecn  variable point multiplication */
      #define MR_ECC_STORE_2M 3   /* point store for ec2m variable point multiplication */
      #define MR_ECC_STORE_N2 3   /* point store for ecn2 variable point multiplication */
      #else
      #define MR_ECC_STORE_N  8   /* 8/9 is close to optimal for 256 bit exponents */
      #define MR_ECC_STORE_2M 9   
      #define MR_ECC_STORE_N2 8   
      #endif
      
      /*#define MR_ECC_STORE_N2_PRECOMP MR_ECC_STORE_N2 */
                                  /* Might want to make this bigger.. */
      
      /* If multi-addition is of m points, and s precomputed values are required, this is max of m*s (=4.10?) */
      #define MR_MAX_M_T_S 64
      
      /* Elliptic Curve epoint structure. Uses projective (X,Y,Z) co-ordinates */
      
      typedef struct {
      int marker;
      big X;
      big Y;
      #ifndef MR_AFFINE_ONLY
      big Z;
      #endif
      } epoint;
      
      
      /* Structure for Comb method for finite *
         field exponentiation with precomputation */
      
      typedef struct {
      #ifdef MR_STATIC
          const mr_small *table;
      #else
          mr_small *table;
      #endif
          big n; 
          int window;
          int max;
      } brick;
      
      /* Structure for Comb method for elliptic *
         curve exponentiation with precomputation  */
      
      typedef struct {
      #ifdef MR_STATIC
          const mr_small *table; 
      #else
          mr_small *table;
      #endif
          big a,b,n;
          int window;
          int max;
      } ebrick;
      
      typedef struct {
      #ifdef MR_STATIC
          const mr_small *table;
      #else
          mr_small *table;
      #endif
          big a6,a2;
          int m,a,b,c;
          int window;
          int max;
      } ebrick2;
      
      typedef struct
      {
          big a;
          big b;
      } zzn2;
      
      typedef struct
      {
          zzn2 a;
          zzn2 b;
          BOOL unitary;
      } zzn4;
      
      typedef struct 
      {
          int marker;
          zzn2 x;
          zzn2 y;
      #ifndef MR_AFFINE_ONLY
          zzn2 z;
      #endif
      
      } ecn2;
      
      typedef struct
      {
          big a;
          big b;
          big c;
      } zzn3;
      
      typedef struct
      {
      	zzn2 a;
      	zzn2 b;
      	zzn2 c;
      } zzn6_3x2;
      
      /* main MIRACL instance structure */
      
      /* ------------------------------------------------------------------------*/
      
      typedef struct {
      mr_small base;       /* number base     */
      mr_small apbase;     /* apparent base   */
      int   pack;          /* packing density */
      int   lg2b;          /* bits in base    */
      mr_small base2;      /* 2^mr_lg2b          */
      BOOL (*user)(void);  /* pointer to user supplied function */
      
      int   nib;           /* length of bigs  */
      #ifndef MR_STRIPPED_DOWN
      int   depth;                 /* error tracing ..*/
      int   trace[MR_MAXDEPTH];    /* .. mechanism    */
      #endif
      BOOL  check;         /* overflow check  */
      BOOL  fout;          /* Output to file   */
      BOOL  fin;           /* Input from file  */
      BOOL  active;
      
      #ifndef MR_NO_FILE_IO
      
      FILE  *infile;       /* Input file       */
      FILE  *otfile;       /* Output file      */
      
      #endif
      
      
      #ifndef MR_NO_RAND
      mr_unsign32 ira[NK];  /* random number...   */
      int         rndptr;   /* ...array & pointer */
      mr_unsign32 borrow;
      #endif
      
                  /* Montgomery constants */
      mr_small ndash;
      big modulus;
      big pR;
      BOOL ACTIVE;
      BOOL MONTY;
      
                             /* Elliptic Curve details   */
      #ifndef MR_NO_SS
      BOOL SS;               /* True for Super-Singular  */
      #endif
      #ifndef MR_NOKOBLITZ
      BOOL KOBLITZ;          /* True for a Koblitz curve */
      #endif
      #ifndef MR_AFFINE_ONLY
      int coord;
      #endif
      int Asize,Bsize;
      
      int M,AA,BB,CC;     /* for GF(2^m) curves */
      
      /*
      mr_small pm,mask;
      int e,k,Me,m;       for GF(p^m) curves */
      
      
      #ifndef MR_STATIC
      
      int logN;           /* constants for fast fourier fft multiplication */
      int nprimes,degree;
      mr_utype *prime,*cr;
      mr_utype *inverse,**roots;
      small_chinese chin;
      mr_utype const1,const2,const3;
      mr_small msw,lsw;
      mr_utype **s1,**s2;   /* pre-computed tables for polynomial reduction */
      mr_utype **t;         /* workspace */
      mr_utype *wa;
      mr_utype *wb;
      mr_utype *wc;
      
      #endif
      
      BOOL same;
      BOOL first_one;
      BOOL debug;
      
      big w0;            /* workspace bigs  */
      big w1,w2,w3,w4;
      big w5,w6,w7;
      big w8,w9,w10,w11;
      big w12,w13,w14,w15;
      big sru;
      big one;
      
      #ifdef MR_KCM
      big big_ndash;
      big ws,wt;
      #endif
      
      big A,B;
      
      /* User modifiables */
      
      #ifndef MR_SIMPLE_IO
      int  IOBSIZ;       /* size of i/o buffer */
      #endif
      BOOL ERCON;        /* error control   */
      int  ERNUM;        /* last error code */
      int  NTRY;         /* no. of tries for probablistic primality testing   */
      #ifndef MR_SIMPLE_IO
      int  INPLEN;       /* input length               */
      #ifndef MR_SIMPLE_BASE
      int  IOBASE;       /* base for input and output */
      
      #endif
      #endif
      #ifdef MR_FLASH
      BOOL EXACT;        /* exact flag      */
      BOOL RPOINT;       /* =ON for radix point, =OFF for fractions in output */
      #endif
      #ifndef MR_STRIPPED_DOWN
      BOOL TRACER;       /* turns trace tracker on/off */
      #endif
      
      #ifdef MR_STATIC
      const int *PRIMES;                      /* small primes array         */
      #ifndef MR_SIMPLE_IO
      char IOBUFF[MR_DEFAULT_BUFFER_SIZE];    /* i/o buffer    */
      #endif
      #else
      int *PRIMES;        /* small primes array         */
      #ifndef MR_SIMPLE_IO
      char *IOBUFF;       /* i/o buffer    */
      #endif
      #endif
      
      #ifdef MR_FLASH
      int   workprec;
      int   stprec;        /* start precision */
      
      int RS,RD;
      double D;
      
      double db,n,p;
      int a,b,c,d,r,q,oldn,ndig;
      mr_small u,v,ku,kv;
      
      BOOL last,carryon;
      flash pi;
      
      #endif
      
      #ifdef MR_FP_ROUNDING
      mr_large inverse_base;
      #endif
      
      #ifndef MR_STATIC
      char *workspace;
      #else
      char workspace[MR_BIG_RESERVE(MR_SPACES)];
      #endif
      
      int TWIST; /* set to twisted curve */
      int qnr;    /* a QNR -1 for p=3 mod 4, -2 for p=5 mod 8, 0 otherwise */
      int cnr;    /* a cubic non-residue */
      int pmod8;
      int pmod9;
      BOOL NO_CARRY;
      } miracl;
      
      /* ------------------------------------------------------------------------*/
      
      
      #ifndef MR_GENERIC_MT
      
      #ifdef MR_WINDOWS_MT
      #define MR_OS_THREADS
      #endif
      
      #ifdef MR_UNIX_MT
      #define MR_OS_THREADS
      #endif
      
      #ifdef MR_OPENMP_MT
      #define MR_OS_THREADS
      #endif
      
      
      #ifndef MR_OS_THREADS
      
      extern miracl *mr_mip;  /* pointer to MIRACL's only global variable */
      
      #endif
      
      #endif
      
      #ifdef MR_GENERIC_MT
      
      #ifdef MR_STATIC
      #define MR_GENERIC_AND_STATIC
      #endif
      
      #define _MIPT_  miracl *,
      #define _MIPTO_ miracl *
      #define _MIPD_  miracl *mr_mip,
      #define _MIPDO_ miracl *mr_mip
      #define _MIPP_  mr_mip,
      #define _MIPPO_ mr_mip
      
      #else
      
      #define _MIPT_    
      #define _MIPTO_  void  
      #define _MIPD_    
      #define _MIPDO_  void  
      #define _MIPP_    
      #define _MIPPO_    
      
      #endif
      
      /* Preamble and exit code for MIRACL routines. *
       * Not used if MR_STRIPPED_DOWN is defined     */ 
      
      #ifdef MR_STRIPPED_DOWN
      #define MR_OUT
      #define MR_IN(N)
      #else
      #define MR_OUT  mr_mip->depth--;        
      #define MR_IN(N) mr_mip->depth++; if (mr_mip->depth<MR_MAXDEPTH) {mr_mip->trace[mr_mip->depth]=(N); if (mr_mip->TRACER) mr_track(_MIPPO_); }
      #endif
      
      /* Function definitions  */
      
      /* Group 0 - Internal routines */
      
      extern void  mr_berror(_MIPT_ int);
      extern mr_small mr_shiftbits(mr_small,int);
      extern mr_small mr_setbase(_MIPT_ mr_small);
      extern void  mr_track(_MIPTO_ );
      extern void  mr_lzero(big);
      extern BOOL  mr_notint(flash);
      extern int   mr_lent(flash);
      extern void  mr_padd(_MIPT_ big,big,big);
      extern void  mr_psub(_MIPT_ big,big,big);
      extern void  mr_pmul(_MIPT_ big,mr_small,big);
      #ifdef MR_FP_ROUNDING
      extern mr_large mr_invert(mr_small);
      extern mr_small imuldiv(mr_small,mr_small,mr_small,mr_small,mr_large,mr_small *);
      extern mr_small mr_sdiv(_MIPT_ big,mr_small,mr_large,big);
      #else
      extern mr_small mr_sdiv(_MIPT_ big,mr_small,big);
      extern void mr_and(big,big,big);
      extern void mr_xor(big,big,big);
      #endif
      extern void  mr_shift(_MIPT_ big,int,big); 
      extern miracl *mr_first_alloc(void);
      extern void  *mr_alloc(_MIPT_ int,int);
      extern void  mr_free(void *);  
      extern void  set_user_function(_MIPT_ BOOL (*)(void));
      extern void  set_io_buffer_size(_MIPT_ int);
      extern int   mr_testbit(_MIPT_ big,int);
      extern void  mr_addbit(_MIPT_ big,int);
      extern int   recode(_MIPT_ big ,int ,int ,int );
      extern int   mr_window(_MIPT_ big,int,int *,int *,int);
      extern int   mr_window2(_MIPT_ big,big,int,int *,int *);
      extern int   mr_naf_window(_MIPT_ big,big,int,int *,int *,int);
      
      extern int   mr_fft_init(_MIPT_ int,big,big,BOOL);
      extern void  mr_dif_fft(_MIPT_ int,int,mr_utype *);
      extern void  mr_dit_fft(_MIPT_ int,int,mr_utype *);
      extern void  fft_reset(_MIPTO_);
      
      extern int   mr_poly_mul(_MIPT_ int,big*,int,big*,big*);
      extern int   mr_poly_sqr(_MIPT_ int,big*,big*);
      extern void  mr_polymod_set(_MIPT_ int,big*,big*);
      extern int   mr_poly_rem(_MIPT_ int,big *,big *);
      
      extern int   mr_ps_big_mul(_MIPT_ int,big *,big *,big *);
      extern int   mr_ps_zzn_mul(_MIPT_ int,big *,big *,big *);
      
      extern mr_small muldiv(mr_small,mr_small,mr_small,mr_small,mr_small *);
      extern mr_small muldvm(mr_small,mr_small,mr_small,mr_small *); 
      extern mr_small muldvd(mr_small,mr_small,mr_small,mr_small *); 
      extern void     muldvd2(mr_small,mr_small,mr_small *,mr_small *); 
      
      extern flash mirvar_mem_variable(char *,int,int);
      extern epoint* epoint_init_mem_variable(_MIPT_ char *,int,int);
      
      /* Group 1 - General purpose, I/O and basic arithmetic routines  */
      
      extern unsigned int   igcd(unsigned int,unsigned int); 
      extern unsigned long  lgcd(unsigned long,unsigned long); 
      extern mr_small sgcd(mr_small,mr_small);
      extern unsigned int   isqrt(unsigned int,unsigned int);
      extern unsigned long  mr_lsqrt(unsigned long,unsigned long);
      extern void  irand(_MIPT_ mr_unsign32);
      extern mr_small brand(_MIPTO_ );       
      extern void  zero(flash);
      extern void  convert(_MIPT_ int,big);
      extern void  uconvert(_MIPT_ unsigned int,big);
      extern void  lgconv(_MIPT_ long,big);
      extern void  ulgconv(_MIPT_ unsigned long,big);
      extern void  tconvert(_MIPT_ mr_utype,big);
      
      #ifdef mr_dltype
      extern void  dlconv(_MIPT_ mr_dltype,big);
      #endif
      
      extern flash mirvar(_MIPT_ int);
      extern flash mirvar_mem(_MIPT_ char *,int);
      extern void  mirkill(big);
      extern void  *memalloc(_MIPT_ int);
      extern void  memkill(_MIPT_ char *,int);
      extern void  mr_init_threading(void);
      extern void  mr_end_threading(void);
      extern miracl *get_mip(void );
      extern void  set_mip(miracl *);
      #ifdef MR_GENERIC_AND_STATIC
      extern miracl *mirsys(miracl *,int,mr_small);
      #else
      extern miracl *mirsys(int,mr_small);
      #endif
      extern miracl *mirsys_basic(miracl *,int,mr_small);
      extern void  mirexit(_MIPTO_ );
      extern int   exsign(flash);
      extern void  insign(int,flash);
      extern int   getdig(_MIPT_ big,int);  
      extern int   numdig(_MIPT_ big);        
      extern void  putdig(_MIPT_ int,big,int);
      extern void  copy(flash,flash);  
      extern void  negify(flash,flash);
      extern void  absol(flash,flash); 
      extern int   size(big);
      extern int   mr_compare(big,big);
      extern void  add(_MIPT_ big,big,big);
      extern void  subtract(_MIPT_ big,big,big);
      extern void  incr(_MIPT_ big,int,big);    
      extern void  decr(_MIPT_ big,int,big);    
      extern void  premult(_MIPT_ big,int,big); 
      extern int   subdiv(_MIPT_ big,int,big);  
      extern BOOL  subdivisible(_MIPT_ big,int);
      extern int   remain(_MIPT_ big,int);   
      extern void  bytes_to_big(_MIPT_ int,const char *,big);
      extern int   big_to_bytes(_MIPT_ int,big,char *,BOOL);
      extern mr_small normalise(_MIPT_ big,big);
      extern void  multiply(_MIPT_ big,big,big);
      extern void  fft_mult(_MIPT_ big,big,big);
      extern BOOL  fastmultop(_MIPT_ int,big,big,big);
      extern void  divide(_MIPT_ big,big,big);  
      extern BOOL  divisible(_MIPT_ big,big);   
      extern void  mad(_MIPT_ big,big,big,big,big,big);
      extern int   instr(_MIPT_ flash,char *);
      extern int   otstr(_MIPT_ flash,char *);
      extern int   cinstr(_MIPT_ flash,char *);
      extern int   cotstr(_MIPT_ flash,char *);
      extern epoint* epoint_init(_MIPTO_ );
      extern epoint* epoint_init_mem(_MIPT_ char *,int);
      extern void* ecp_memalloc(_MIPT_ int);
      void ecp_memkill(_MIPT_ char *,int);
      BOOL init_big_from_rom(big,int,const mr_small *,int ,int *);
      BOOL init_point_from_rom(epoint *,int,const mr_small *,int,int *);
      
      #ifndef MR_NO_FILE_IO
      
      extern int   innum(_MIPT_ flash,FILE *);          
      extern int   otnum(_MIPT_ flash,FILE *);
      extern int   cinnum(_MIPT_ flash,FILE *);
      extern int   cotnum(_MIPT_ flash,FILE *);
      
      #endif
      
      /* Group 2 - Advanced arithmetic routines */
      
      extern mr_small smul(mr_small,mr_small,mr_small);
      extern mr_small spmd(mr_small,mr_small,mr_small); 
      extern mr_small invers(mr_small,mr_small);
      extern mr_small sqrmp(mr_small,mr_small);
      extern int      jac(mr_small,mr_small);
      
      extern void  gprime(_MIPT_ int);
      extern int   jack(_MIPT_ big,big);
      extern int   egcd(_MIPT_ big,big,big);
      extern int   xgcd(_MIPT_ big,big,big,big,big);
      extern int   invmodp(_MIPT_ big,big,big);
      extern int   logb2(_MIPT_ big);
      extern int   hamming(_MIPT_ big);
      extern void  expb2(_MIPT_ int,big);
      extern void  bigbits(_MIPT_ int,big);
      extern void  expint(_MIPT_ int,int,big);
      extern void  sftbit(_MIPT_ big,int,big);
      extern void  power(_MIPT_ big,long,big,big);
      extern void  powmod(_MIPT_ big,big,big,big);
      extern void  powmod2(_MIPT_ big,big,big,big,big,big);
      extern void  powmodn(_MIPT_ int,big *,big *,big,big);
      extern int   powltr(_MIPT_ int,big,big,big);
      extern BOOL  double_inverse(_MIPT_ big,big,big,big,big);
      extern BOOL  multi_inverse(_MIPT_ int,big*,big,big*);
      extern void  lucas(_MIPT_ big,big,big,big,big);
      extern BOOL  nroot(_MIPT_ big,int,big);
      extern BOOL  sqroot(_MIPT_ big,big,big);
      extern void  bigrand(_MIPT_ big,big);
      extern void  bigdig(_MIPT_ int,int,big);
      extern int   trial_division(_MIPT_ big,big);
      extern BOOL  isprime(_MIPT_ big);
      extern BOOL  nxprime(_MIPT_ big,big);
      extern BOOL  nxsafeprime(_MIPT_ int,int,big,big);
      extern BOOL  crt_init(_MIPT_ big_chinese *,int,big *);
      extern void  crt(_MIPT_ big_chinese *,big *,big);
      extern void  crt_end(big_chinese *);
      extern BOOL  scrt_init(_MIPT_ small_chinese *,int,mr_utype *);    
      extern void  scrt(_MIPT_ small_chinese*,mr_utype *,big); 
      extern void  scrt_end(small_chinese *);
      #ifndef MR_STATIC
      extern BOOL  brick_init(_MIPT_ brick *,big,big,int,int);
      extern void  brick_end(brick *);
      #else
      extern void  brick_init(brick *,const mr_small *,big,int,int);
      #endif
      extern void  pow_brick(_MIPT_ brick *,big,big);
      #ifndef MR_STATIC
      extern BOOL  ebrick_init(_MIPT_ ebrick *,big,big,big,big,big,int,int);
      extern void  ebrick_end(ebrick *);
      #else
      extern void  ebrick_init(ebrick *,const mr_small *,big,big,big,int,int);
      #endif
      extern int   mul_brick(_MIPT_ ebrick*,big,big,big);
      #ifndef MR_STATIC
      extern BOOL  ebrick2_init(_MIPT_ ebrick2 *,big,big,big,big,int,int,int,int,int,int);
      extern void  ebrick2_end(ebrick2 *);
      #else
      extern void  ebrick2_init(ebrick2 *,const mr_small *,big,big,int,int,int,int,int,int);
      #endif
      extern int   mul2_brick(_MIPT_ ebrick2*,big,big,big);
      
      /* Montgomery stuff */
      
      extern mr_small prepare_monty(_MIPT_ big);
      extern void  kill_monty(_MIPTO_ );
      extern void  nres(_MIPT_ big,big);        
      extern void  redc(_MIPT_ big,big);        
      
      extern void  nres_negate(_MIPT_ big,big);
      extern void  nres_modadd(_MIPT_ big,big,big);  
      extern void  nres_modsub(_MIPT_ big,big,big); 
      extern void  nres_lazy(_MIPT_ big,big,big,big,big,big);
      extern void  nres_complex(_MIPT_ big,big,big,big);
      extern void  nres_double_modadd(_MIPT_ big,big,big);    
      extern void  nres_double_modsub(_MIPT_ big,big,big); 
      extern void  nres_premult(_MIPT_ big,int,big);
      extern void  nres_modmult(_MIPT_ big,big,big);    
      extern int   nres_moddiv(_MIPT_ big,big,big);     
      extern void  nres_dotprod(_MIPT_ int,big *,big *,big);
      extern void  nres_powmod(_MIPT_ big,big,big);     
      extern void  nres_powltr(_MIPT_ int,big,big);     
      extern void  nres_powmod2(_MIPT_ big,big,big,big,big);     
      extern void  nres_powmodn(_MIPT_ int,big *,big *,big);
      extern BOOL  nres_sqroot(_MIPT_ big,big);
      extern void  nres_lucas(_MIPT_ big,big,big,big);
      extern BOOL  nres_double_inverse(_MIPT_ big,big,big,big);
      extern BOOL  nres_multi_inverse(_MIPT_ int,big *,big *);
      extern void  nres_div2(_MIPT_ big,big);
      extern void  nres_div3(_MIPT_ big,big);
      extern void  nres_div5(_MIPT_ big,big);
      
      extern void  shs_init(sha *);
      extern void  shs_process(sha *,int);
      extern void  shs_hash(sha *,char *);
      
      extern void  shs256_init(sha256 *);
      extern void  shs256_process(sha256 *,int);
      extern void  shs256_hash(sha256 *,char *);
      
      #ifdef mr_unsign64
      
      extern void  shs512_init(sha512 *);
      extern void  shs512_process(sha512 *,int);
      extern void  shs512_hash(sha512 *,char *);
      
      extern void  shs384_init(sha384 *);
      extern void  shs384_process(sha384 *,int);
      extern void  shs384_hash(sha384 *,char *);
      
      extern void  sha3_init(sha3 *,int);
      extern void  sha3_process(sha3 *,int);
      extern void  sha3_hash(sha3 *,char *);
      
      #endif
      
      extern BOOL  aes_init(aes *,int,int,char *,char *);
      extern void  aes_getreg(aes *,char *);
      extern void  aes_ecb_encrypt(aes *,MR_BYTE *);
      extern void  aes_ecb_decrypt(aes *,MR_BYTE *);
      extern mr_unsign32 aes_encrypt(aes *,char *);
      extern mr_unsign32 aes_decrypt(aes *,char *);
      extern void  aes_reset(aes *,int,char *);
      extern void  aes_end(aes *);
      
      extern void  gcm_init(gcm *,int,char *,int,char *);
      extern BOOL  gcm_add_header(gcm *,char *,int);
      extern BOOL  gcm_add_cipher(gcm *,int,char *,int,char *);
      extern void  gcm_finish(gcm *,char *);
      
      extern void FPE_encrypt(int ,aes *,mr_unsign32 ,mr_unsign32 ,char *,int);
      extern void FPE_decrypt(int ,aes *,mr_unsign32 ,mr_unsign32 ,char *,int);
      
      extern void  strong_init(csprng *,int,char *,mr_unsign32);   
      extern int   strong_rng(csprng *);
      extern void  strong_bigrand(_MIPT_ csprng *,big,big);
      extern void  strong_bigdig(_MIPT_ csprng *,int,int,big);
      extern void  strong_kill(csprng *);
      
      /* special modular multipliers */
      
      extern void  comba_mult(big,big,big);
      extern void  comba_square(big,big);
      extern void  comba_redc(_MIPT_ big,big);
      extern void  comba_modadd(_MIPT_ big,big,big);
      extern void  comba_modsub(_MIPT_ big,big,big);
      extern void  comba_double_modadd(_MIPT_ big,big,big);
      extern void  comba_double_modsub(_MIPT_ big,big,big);
      extern void  comba_negate(_MIPT_ big,big);
      extern void  comba_add(big,big,big);
      extern void  comba_sub(big,big,big);
      extern void  comba_double_add(big,big,big);
      extern void  comba_double_sub(big,big,big);
      
      extern void  comba_mult2(_MIPT_ big,big,big);
      
      extern void  fastmodmult(_MIPT_ big,big,big);
      extern void  fastmodsquare(_MIPT_ big,big);   
      
      extern void  kcm_mul(_MIPT_ big,big,big);
      extern void  kcm_sqr(_MIPT_ big,big); 
      extern void  kcm_redc(_MIPT_ big,big); 
      
      extern void  kcm_multiply(_MIPT_ int,big,big,big);
      extern void  kcm_square(_MIPT_ int,big,big);
      extern BOOL  kcm_top(_MIPT_ int,big,big,big);
      
      /* elliptic curve stuff */
      
      extern BOOL point_at_infinity(epoint *);
      
      extern void mr_jsf(_MIPT_ big,big,big,big,big,big);
      
      extern void ecurve_init(_MIPT_ big,big,big,int);
      extern int  ecurve_add(_MIPT_ epoint *,epoint *);
      extern int  ecurve_sub(_MIPT_ epoint *,epoint *);
      extern void ecurve_double_add(_MIPT_ epoint *,epoint *,epoint *,epoint *,big *,big *);
      extern void ecurve_multi_add(_MIPT_ int,epoint **,epoint **);
      extern void ecurve_double(_MIPT_ epoint*);
      extern int  ecurve_mult(_MIPT_ big,epoint *,epoint *);
      extern void ecurve_mult2(_MIPT_ big,epoint *,big,epoint *,epoint *);
      extern void ecurve_multn(_MIPT_ int,big *,epoint**,epoint *);
      
      extern BOOL epoint_x(_MIPT_ big);
      extern BOOL epoint_set(_MIPT_ big,big,int,epoint*);
      extern int  epoint_get(_MIPT_ epoint*,big,big);
      extern void epoint_getxyz(_MIPT_ epoint *,big,big,big);
      extern BOOL epoint_norm(_MIPT_ epoint *);
      extern BOOL epoint_multi_norm(_MIPT_ int,big *,epoint **);  
      extern void epoint_free(epoint *);
      extern void epoint_copy(epoint *,epoint *);
      extern BOOL epoint_comp(_MIPT_ epoint *,epoint *);
      extern void epoint_negate(_MIPT_ epoint *);
      
      extern BOOL ecurve2_init(_MIPT_ int,int,int,int,big,big,BOOL,int);
      extern big  ecurve2_add(_MIPT_ epoint *,epoint *);
      extern big  ecurve2_sub(_MIPT_ epoint *,epoint *);
      extern void ecurve2_multi_add(_MIPT_ int,epoint **,epoint **);
      extern void ecurve2_mult(_MIPT_ big,epoint *,epoint *);
      extern void ecurve2_mult2(_MIPT_ big,epoint *,big,epoint *,epoint *);
      extern void ecurve2_multn(_MIPT_ int,big *,epoint**,epoint *);
      
      extern epoint* epoint2_init(_MIPTO_ );
      extern BOOL epoint2_set(_MIPT_ big,big,int,epoint*);
      extern int  epoint2_get(_MIPT_ epoint*,big,big);
      extern void epoint2_getxyz(_MIPT_ epoint *,big,big,big);
      extern int  epoint2_norm(_MIPT_ epoint *);
      extern void epoint2_free(epoint *);
      extern void epoint2_copy(epoint *,epoint *);
      extern BOOL epoint2_comp(_MIPT_ epoint *,epoint *);
      extern void epoint2_negate(_MIPT_ epoint *);
      
      /* GF(2) stuff */
      
      extern BOOL prepare_basis(_MIPT_ int,int,int,int,BOOL);
      extern int parity2(big);
      extern BOOL multi_inverse2(_MIPT_ int,big *,big *);
      extern void add2(big,big,big);
      extern void incr2(big,int,big);
      extern void reduce2(_MIPT_ big,big);
      extern void multiply2(_MIPT_ big,big,big);
      extern void modmult2(_MIPT_ big,big,big);
      extern void modsquare2(_MIPT_ big,big);
      extern void power2(_MIPT_ big,int,big);
      extern void sqroot2(_MIPT_ big,big);
      extern void halftrace2(_MIPT_ big,big);
      extern BOOL quad2(_MIPT_ big,big);
      extern BOOL inverse2(_MIPT_ big,big);
      extern void karmul2(int,mr_small *,mr_small *,mr_small *,mr_small *);
      extern void karmul2_poly(_MIPT_ int,big *,big *,big *,big *);
      extern void karmul2_poly_upper(_MIPT_ int,big *,big *,big *,big *);
      extern void gf2m_dotprod(_MIPT_ int,big *,big *,big);
      extern int  trace2(_MIPT_ big);
      extern void rand2(_MIPT_ big);
      extern void gcd2(_MIPT_ big,big,big);
      extern int degree2(big);
      
      /* zzn2 stuff */
      
      extern BOOL zzn2_iszero(zzn2 *);
      extern BOOL zzn2_isunity(_MIPT_ zzn2 *);
      extern void zzn2_from_int(_MIPT_ int,zzn2 *);
      extern void zzn2_from_ints(_MIPT_ int,int,zzn2 *);
      extern void zzn2_copy(zzn2 *,zzn2 *);
      extern void zzn2_zero(zzn2 *);
      extern void zzn2_negate(_MIPT_ zzn2 *,zzn2 *);
      extern void zzn2_conj(_MIPT_ zzn2 *,zzn2 *);
      extern void zzn2_add(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
      extern void zzn2_sub(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
      extern void zzn2_smul(_MIPT_ zzn2 *,big,zzn2 *);
      extern void zzn2_mul(_MIPT_ zzn2 *,zzn2 *,zzn2 *);
      extern void zzn2_sqr(_MIPT_ zzn2 *,zzn2 *);
      extern void zzn2_inv(_MIPT_ zzn2 *);
      extern void zzn2_timesi(_MIPT_ zzn2 *);
      extern void zzn2_powl(_MIPT_ zzn2 *,big,zzn2 *);
      extern void zzn2_from_zzns(big,big,zzn2 *);
      extern void zzn2_from_bigs(_MIPT_ big,big,zzn2 *);
      extern void zzn2_from_zzn(big,zzn2 *);
      extern void zzn2_from_big(_MIPT_ big, zzn2 *);
      extern void zzn2_sadd(_MIPT_ zzn2 *,big,zzn2 *);
      extern void zzn2_ssub(_MIPT_ zzn2 *,big,zzn2 *);
      extern void zzn2_div2(_MIPT_ zzn2 *);
      extern void zzn2_div3(_MIPT_ zzn2 *);
      extern void zzn2_div5(_MIPT_ zzn2 *);
      extern void zzn2_imul(_MIPT_ zzn2 *,int,zzn2 *);
      extern BOOL zzn2_compare(zzn2 *,zzn2 *);
      extern void zzn2_txx(_MIPT_ zzn2 *);
      extern void zzn2_txd(_MIPT_ zzn2 *);
      extern BOOL zzn2_sqrt(_MIPT_ zzn2 *,zzn2 *);
      extern BOOL zzn2_qr(_MIPT_ zzn2 *);
      extern BOOL zzn2_multi_inverse(_MIPT_ int,zzn2 *,zzn2 *);
      
      
      /* zzn3 stuff */
      
      extern void zzn3_set(_MIPT_ int,big);
      extern BOOL zzn3_iszero(zzn3 *);
      extern BOOL zzn3_isunity(_MIPT_ zzn3 *);
      extern void zzn3_from_int(_MIPT_ int,zzn3 *);
      extern void zzn3_from_ints(_MIPT_ int,int,int,zzn3 *);
      extern void zzn3_copy(zzn3 *,zzn3 *);
      extern void zzn3_zero(zzn3 *);
      extern void zzn3_negate(_MIPT_ zzn3 *,zzn3 *);
      extern void zzn3_powq(_MIPT_ zzn3 *,zzn3 *);
      extern void zzn3_add(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
      extern void zzn3_sub(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
      extern void zzn3_smul(_MIPT_ zzn3 *,big,zzn3 *);
      extern void zzn3_mul(_MIPT_ zzn3 *,zzn3 *,zzn3 *);
      extern void zzn3_inv(_MIPT_ zzn3 *);
      extern void zzn3_timesi(_MIPT_ zzn3 *);
      extern void zzn3_timesi2(_MIPT_ zzn3 *);
      extern void zzn3_powl(_MIPT_ zzn3 *,big,zzn3 *);
      extern void zzn3_from_zzns(big,big,big,zzn3 *);
      extern void zzn3_from_bigs(_MIPT_ big,big,big,zzn3 *);
      extern void zzn3_from_zzn(big,zzn3 *);
      extern void zzn3_from_zzn_1(big,zzn3 *);
      extern void zzn3_from_zzn_2(big,zzn3 *);
      extern void zzn3_from_big(_MIPT_ big, zzn3 *);
      extern void zzn3_sadd(_MIPT_ zzn3 *,big,zzn3 *);
      extern void zzn3_ssub(_MIPT_ zzn3 *,big,zzn3 *);
      extern void zzn3_div2(_MIPT_ zzn3 *);
      extern void zzn3_imul(_MIPT_ zzn3 *,int,zzn3 *);
      extern BOOL zzn3_compare(zzn3 *,zzn3 *);
      
      /* zzn4 stuff */
      
      extern BOOL zzn4_iszero(zzn4 *);
      extern BOOL zzn4_isunity(_MIPT_ zzn4 *);
      extern void zzn4_from_int(_MIPT_ int,zzn4 *);
      extern void zzn4_copy(zzn4 *,zzn4 *);
      extern void zzn4_zero(zzn4 *);
      extern void zzn4_negate(_MIPT_ zzn4 *,zzn4 *);
      extern void zzn4_powq(_MIPT_ zzn2 *,zzn4 *);
      extern void zzn4_add(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
      extern void zzn4_sub(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
      extern void zzn4_smul(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
      extern void zzn4_sqr(_MIPT_ zzn4 *,zzn4 *);
      extern void zzn4_mul(_MIPT_ zzn4 *,zzn4 *,zzn4 *);
      extern void zzn4_inv(_MIPT_ zzn4 *);
      extern void zzn4_timesi(_MIPT_ zzn4 *);
      extern void zzn4_tx(_MIPT_ zzn4 *);
      extern void zzn4_from_zzn2s(zzn2 *,zzn2 *,zzn4 *);
      extern void zzn4_from_zzn2(zzn2 *,zzn4 *);
      extern void zzn4_from_zzn2h(zzn2 *,zzn4 *);
      extern void zzn4_from_zzn(big,zzn4 *);
      extern void zzn4_from_big(_MIPT_ big , zzn4 *);
      extern void zzn4_sadd(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
      extern void zzn4_ssub(_MIPT_ zzn4 *,zzn2 *,zzn4 *);
      extern void zzn4_div2(_MIPT_ zzn4 *);
      extern void zzn4_conj(_MIPT_ zzn4 *,zzn4 *);
      extern void zzn4_imul(_MIPT_ zzn4 *,int,zzn4 *);
      extern void zzn4_lmul(_MIPT_ zzn4 *,big,zzn4 *);
      extern BOOL zzn4_compare(zzn4 *,zzn4 *);
      
      /* ecn2 stuff */
      
      extern BOOL ecn2_iszero(ecn2 *);
      extern void ecn2_copy(ecn2 *,ecn2 *);
      extern void ecn2_zero(ecn2 *);
      extern BOOL ecn2_compare(_MIPT_ ecn2 *,ecn2 *);
      extern void ecn2_norm(_MIPT_ ecn2 *);
      extern void ecn2_get(_MIPT_ ecn2 *,zzn2 *,zzn2 *,zzn2 *);
      extern void ecn2_getxy(ecn2 *,zzn2 *,zzn2 *);
      extern void ecn2_getx(ecn2 *,zzn2 *);
      extern void ecn2_getz(_MIPT_ ecn2 *,zzn2 *);
      extern void ecn2_rhs(_MIPT_ zzn2 *,zzn2 *);
      extern BOOL ecn2_set(_MIPT_ zzn2 *,zzn2 *,ecn2 *);
      extern BOOL ecn2_setx(_MIPT_ zzn2 *,ecn2 *);
      extern void ecn2_setxyz(_MIPT_ zzn2 *,zzn2 *,zzn2 *,ecn2 *);
      extern void ecn2_negate(_MIPT_ ecn2 *,ecn2 *);
      extern BOOL ecn2_add3(_MIPT_ ecn2 *,ecn2 *,zzn2 *,zzn2 *,zzn2 *);
      extern BOOL ecn2_add2(_MIPT_ ecn2 *,ecn2 *,zzn2 *,zzn2 *);
      extern BOOL ecn2_add1(_MIPT_ ecn2 *,ecn2 *,zzn2 *);
      extern BOOL ecn2_add(_MIPT_ ecn2 *,ecn2 *);
      extern BOOL ecn2_sub(_MIPT_ ecn2 *,ecn2 *);
      extern BOOL ecn2_add_sub(_MIPT_ ecn2 *,ecn2 *,ecn2 *,ecn2 *);
      extern int ecn2_mul2_jsf(_MIPT_ big,ecn2 *,big,ecn2 *,ecn2 *);
      extern int ecn2_mul(_MIPT_ big,ecn2 *);
      extern void ecn2_psi(_MIPT_ zzn2 *,ecn2 *);
      extern BOOL ecn2_multi_norm(_MIPT_ int ,zzn2 *,ecn2 *);
      extern int ecn2_mul4_gls_v(_MIPT_ big *,int,ecn2 *,big *,ecn2 *,zzn2 *,ecn2 *);
      extern int ecn2_muln_engine(_MIPT_ int,int,int,int,big *,big *,big *,big *,ecn2 *,ecn2 *,ecn2 *);
      extern void ecn2_precomp_gls(_MIPT_ int,BOOL,ecn2 *,zzn2 *,ecn2 *);
      extern int ecn2_mul2_gls(_MIPT_ big *,ecn2 *,zzn2 *,ecn2 *);
      extern void ecn2_precomp(_MIPT_ int,BOOL,ecn2 *,ecn2 *);
      extern int ecn2_mul2(_MIPT_ big,int,ecn2 *,big,ecn2 *,ecn2 *);
      #ifndef MR_STATIC
      extern BOOL ecn2_brick_init(_MIPT_ ebrick *,zzn2 *,zzn2 *,big,big,big,int,int);
      extern void ecn2_brick_end(ebrick *);
      #else
      extern void ebrick_init(ebrick *,const mr_small *,big,big,big,int,int);
      #endif
      extern void ecn2_mul_brick_gls(_MIPT_ ebrick *B,big *,zzn2 *,zzn2 *,zzn2 *);
      extern void ecn2_multn(_MIPT_ int,big *,ecn2 *,ecn2 *);
      extern void ecn2_mult4(_MIPT_ big *,ecn2 *,ecn2 *);
      /* Group 3 - Floating-slash routines      */
      
      #ifdef MR_FLASH
      extern void  fpack(_MIPT_ big,big,flash);
      extern void  numer(_MIPT_ flash,big);    
      extern void  denom(_MIPT_ flash,big);    
      extern BOOL  fit(big,big,int);    
      extern void  build(_MIPT_ flash,int (*)(_MIPT_ big,int));
      extern void  mround(_MIPT_ big,big,flash);         
      extern void  flop(_MIPT_ flash,flash,int *,flash);
      extern void  fmul(_MIPT_ flash,flash,flash);      
      extern void  fdiv(_MIPT_ flash,flash,flash);      
      extern void  fadd(_MIPT_ flash,flash,flash);      
      extern void  fsub(_MIPT_ flash,flash,flash);      
      extern int   fcomp(_MIPT_ flash,flash);           
      extern void  fconv(_MIPT_ int,int,flash);         
      extern void  frecip(_MIPT_ flash,flash);          
      extern void  ftrunc(_MIPT_ flash,big,flash);      
      extern void  fmodulo(_MIPT_ flash,flash,flash);
      extern void  fpmul(_MIPT_ flash,int,int,flash);   
      extern void  fincr(_MIPT_ flash,int,int,flash);   
      extern void  dconv(_MIPT_ double,flash);          
      extern double fdsize(_MIPT_ flash);
      extern void  frand(_MIPT_ flash);
      
      /* Group 4 - Advanced Flash routines */ 
      
      extern void  fpower(_MIPT_ flash,int,flash);
      extern BOOL  froot(_MIPT_ flash,int,flash); 
      extern void  fpi(_MIPT_ flash);             
      extern void  fexp(_MIPT_ flash,flash);      
      extern void  flog(_MIPT_ flash,flash);      
      extern void  fpowf(_MIPT_ flash,flash,flash);
      extern void  ftan(_MIPT_ flash,flash); 
      extern void  fatan(_MIPT_ flash,flash);
      extern void  fsin(_MIPT_ flash,flash); 
      extern void  fasin(_MIPT_ flash,flash);
      extern void  fcos(_MIPT_ flash,flash);  
      extern void  facos(_MIPT_ flash,flash); 
      extern void  ftanh(_MIPT_ flash,flash); 
      extern void  fatanh(_MIPT_ flash,flash);
      extern void  fsinh(_MIPT_ flash,flash); 
      extern void  fasinh(_MIPT_ flash,flash);
      extern void  fcosh(_MIPT_ flash,flash); 
      extern void  facosh(_MIPT_ flash,flash);
      #endif
      
      
      /* Test predefined Macros to determine compiler type, and hopefully 
         selectively use fast in-line assembler (or other compiler specific
         optimisations. Note I am unsure of Microsoft version numbers. So I 
         suspect are Microsoft.
      
         Note: It seems to be impossible to get the 16-bit Microsoft compiler
         to allow inline 32-bit op-codes. So I suspect that INLINE_ASM == 2 will
         never work with it. Pity. 
      
      #define INLINE_ASM 1    -> generates 8086 inline assembly
      #define INLINE_ASM 2    -> generates mixed 8086 & 80386 inline assembly,
                                 so you can get some benefit while running in a 
                                 16-bit environment on 32-bit hardware (DOS, Windows
                                 3.1...)
      #define INLINE_ASM 3    -> generate true 80386 inline assembly - (Using DOS 
                                 extender, Windows '95/Windows NT)
                                 Actually optimised for Pentium
      
      #define INLINE_ASM 4    -> 80386 code in the GNU style (for (DJGPP)
      
      Small, medium, compact and large memory models are supported for the
      first two of the above.
                              
      */
      
      /* To allow for inline assembly */
      
      #ifdef __GNUC__ 
          #define ASM __asm__ __volatile__
      #endif
      
      #ifdef __TURBOC__ 
          #define ASM asm
      #endif
      
      #ifdef _MSC_VER
          #define ASM _asm
      #endif
      
      #ifndef MR_NOASM
      
      /* Win64 - inline the time critical function */
      #ifndef MR_NO_INTRINSICS
      	#ifdef MR_WIN64
      		#define muldvd(a,b,c,rp) (*(rp)=_umul128((a),(b),&(tm)),*(rp)+=(c),tm+=(*(rp)<(c)),tm)
      		#define muldvd2(a,b,c,rp) (tr=_umul128((a),(b),&(tm)),tr+=(*(c)),tm+=(tr<(*(c))),tr+=(*(rp)),tm+=(tr<(*(rp))),*(rp)=tr,*(c)=tm)
      	#endif
      
      /* Itanium - inline the time-critical functions */
      
          #ifdef MR_ITANIUM
              #define muldvd(a,b,c,rp)  (tm=_m64_xmahu((a),(b),(c)),*(rp)=_m64_xmalu((a),(b),(c)),tm)
              #define muldvd2(a,b,c,rp) (tm=_m64_xmalu((a),(b),(*(c))),*(c)=_m64_xmahu((a),(b),(*(c))),tm+=*(rp),*(c)+=(tm<*(rp)),*(rp)=tm)
          #endif
      #endif
      /*
      
      SSE2 code. Works as for itanium - but in fact it is slower than the regular code so not recommended
      Would require a call to emmintrin.h or xmmintrin.h, and an __m128i variable tm to be declared in effected 
      functions. But it works!
      
      	#define muldvd(a,b,c,rp)  (tm=_mm_add_epi64(_mm_mul_epu32(_mm_cvtsi32_si128((a)),_mm_cvtsi32_si128((b))),_mm_cvtsi32_si128((c))),*(rp)=_mm_cvtsi128_si32(tm),_mm_cvtsi128_si32(_mm_shuffle_epi32(tm,_MM_SHUFFLE(3,2,0,1))) )
      	#define muldvd2(a,b,c,rp) (tm=_mm_add_epi64(_mm_add_epi64(_mm_mul_epu32(_mm_cvtsi32_si128((a)),_mm_cvtsi32_si128((b))),_mm_cvtsi32_si128(*(c))),_mm_cvtsi32_si128(*(rp))),*(rp)=_mm_cvtsi128_si32(tm),*(c)=_mm_cvtsi128_si32( _mm_shuffle_epi32(tm,_MM_SHUFFLE(3,2,0,1))  )
      */
      
      /* Borland C/Turbo C */
      
          #ifdef __TURBOC__ 
          #ifndef __HUGE__
              #if defined(__COMPACT__) || defined(__LARGE__)
                  #define MR_LMM
              #endif
      
              #if MIRACL==16
                  #define INLINE_ASM 1
              #endif
      
              #if __TURBOC__>=0x410
                  #if MIRACL==32
      #if defined(__SMALL__) || defined(__MEDIUM__) || defined(__LARGE__) || defined(__COMPACT__)
                          #define INLINE_ASM 2
                      #else
                          #define INLINE_ASM 3
                      #endif
                  #endif
              #endif
          #endif
          #endif
      
      /* Microsoft C */
      
          #ifdef _MSC_VER
          #ifndef M_I86HM        
              #if defined(M_I86CM) || defined(M_I86LM)
                  #define MR_LMM
              #endif
              #if _MSC_VER>=600
                  #if _MSC_VER<1200
                      #if MIRACL==16
                          #define INLINE_ASM 1
                      #endif
                  #endif
              #endif
              #if _MSC_VER>=1000
      			#if _MSC_VER<1500
      				#if MIRACL==32
      					#define INLINE_ASM 3
      				#endif
      			#endif
              #endif     
          #endif       
          #endif
      
      /* DJGPP GNU C */
      
          #ifdef __GNUC__
          #ifdef i386
              #if MIRACL==32
                  #define INLINE_ASM 4
              #endif
          #endif
          #endif
      
      #endif
      
      
      
      /* 
         The following contribution is from Tielo Jongmans, Netherlands
         These inline assembler routines are suitable for Watcom 10.0 and up 
      
         Added into miracl.h.  Notice the override of the original declarations 
         of these routines, which should be removed.
      
         The following pragma is optional, it is dangerous, but it saves a 
         calling sequence
      */
      
      /*
      
      #pragma off (check_stack);
      
      extern unsigned int muldiv(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int *);
      #pragma aux muldiv=                 \
             "mul     edx"                \
             "add     eax,ebx"            \
             "adc     edx,0"              \
             "div     ecx"                \
             "mov     [esi],edx"          \
          parm [eax] [edx] [ebx] [ecx] [esi]   \
          value [eax]                     \
          modify [eax edx];
      
      extern unsigned int muldvm(unsigned int, unsigned int, unsigned int, unsigned int *);
      #pragma aux muldvm=                 \
              "div     ebx"               \
              "mov     [ecx],edx"         \
          parm [edx] [eax] [ebx] [ecx]    \
          value [eax]                     \
          modify [eax edx];
      
      extern unsigned int muldvd(unsigned int, unsigned int, unsigned int, unsigned int *);
      #pragma aux muldvd=                 \
              "mul     edx"               \
              "add     eax,ebx"           \
              "adc     edx,0"             \
              "mov     [ecx],eax"         \
              "mov     eax,edx"           \
          parm [eax] [edx] [ebx] [ecx]    \
          value [eax]                     \
          modify [eax edx];
      
      */
      
      
      #endif
      
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat mirdef.h
      /* 
       *   MIRACL compiler/hardware definitions - mirdef.h
       *   This version suitable for use with most 32-bit computers
       *   e.g. 80386+ PC, VAX, ARM etc. Assembly language versions of muldiv,
       *   muldvm, muldvd and muldvd2 will be necessary. See mrmuldv.any 
       *
       *   Also suitable for DJGPP GNU C Compiler
       *   ... but change __int64 to long long
       */
      
      #define MIRACL 32
      #define MR_LITTLE_ENDIAN    /* This may need to be changed        */
      #define mr_utype int
                                  /* the underlying type is usually int *
                                   * but see mrmuldv.any                */
      #define mr_unsign32 unsigned int
                                  /* 32 bit unsigned type               */
      #define MR_IBITS      32    /* bits in int  */
      #define MR_LBITS      32    /* bits in long */
      #define MR_FLASH      52      
                                  /* delete this definition if integer  *
                                   * only version of MIRACL required    */
                                  /* Number of bits per double mantissa */
      
      #define mr_dltype __int64   /* ... or long long for Unix/Linux */
      #define mr_unsign64 unsigned __int64
      
      #define MAXBASE ((mr_small)1<<(MIRACL-1))
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat SM2_sv.c
       
      #include "SM2_sv.h"
      #include "KDF.h"
      
      #pragma comment(lib,"mymiracl.lib")
      
      unsigned char SM2_p[32] = { 0xff,0xff,0xff,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
      0xff,0xff,0xff,0xff,0x00,0x00,0x00,0x00, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff };
      unsigned char SM2_a[32] = { 0xff,0xff,0xff,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
      0xff,0xff,0xff,0xff,0x00,0x00,0x00,0x00, 0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xfc };
      unsigned char SM2_b[32] = { 0x28,0xe9,0xfa,0x9e, 0x9d,0x9f,0x5e,0x34, 0x4d,0x5a,0x9e,0x4b,0xcf,0x65,0x09,0xa7,
      0xf3,0x97,0x89,0xf5, 0x15,0xab,0x8f,0x92, 0xdd,0xbc,0xbd,0x41,0x4d,0x94,0x0e,0x93 };
      unsigned char SM2_Gx[32] = { 0x32,0xc4,0xae,0x2c, 0x1f,0x19,0x81,0x19,0x5f,0x99,0x04,0x46,0x6a,0x39,0xc9,0x94,
      0x8f,0xe3,0x0b,0xbf,0xf2,0x66,0x0b,0xe1,0x71,0x5a,0x45,0x89,0x33,0x4c,0x74,0xc7 };
      unsigned char SM2_Gy[32] = { 0xbc,0x37,0x36,0xa2,0xf4,0xf6,0x77,0x9c,0x59,0xbd,0xce,0xe3,0x6b,0x69,0x21,0x53,0xd0,
      0xa9,0x87,0x7c,0xc6,0x2a,0x47,0x40,0x02,0xdf,0x32,0xe5,0x21,0x39,0xf0,0xa0 };
      unsigned char SM2_n[32] = { 0xff,0xff,0xff,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
      0x72,0x03,0xdf,0x6b,0x21,0xc6,0x05,0x2b,0x53,0xbb,0xf4,0x09,0x39,0xd5,0x41,0x23 };
      
      
      /****************************************************************
      Function: SM2_Init
      Description: Initiate SM2 curve
      Calls: MIRACL functions
      Called By: SM2_KeyGeneration,SM2_Sign,SM2_Verify,SM2_SelfCheck
      Input: null
      Output: null
      Return: 0: sucess;
      1: parameter initialization error;
      4: the given point G is not a point of order n
      Others:
      ****************************************************************/
      int SM2_Init()
      {
      	Gx = mirvar(0);
      	Gy = mirvar(0);
      	p = mirvar(0);
      	a = mirvar(0);
      	b = mirvar(0);
      	n = mirvar(0);
      	bytes_to_big(SM2_NUMWORD, SM2_Gx, Gx);
      	bytes_to_big(SM2_NUMWORD, SM2_Gy, Gy);
      	bytes_to_big(SM2_NUMWORD, SM2_p, p);
      	bytes_to_big(SM2_NUMWORD, SM2_a, a);
      	bytes_to_big(SM2_NUMWORD, SM2_b, b);
      	bytes_to_big(SM2_NUMWORD, SM2_n, n);
      	ecurve_init(a, b, p, MR_PROJECTIVE);
      	G = epoint_init();
      	nG = epoint_init();
      	if (!epoint_set(Gx, Gy, 0, G))//initialise point G
      	{
      		return ERR_ECURVE_INIT;
      	}
      	ecurve_mult(n, G, nG);
      	if (!point_at_infinity(nG)) //test if the order of the point is n
      	{
      		return ERR_ORDER;
      	}
      	return 0;
      }
      /****************************************************************
      Function: Test_Point
      Description: test if the given point is on SM2 curve
      Calls:
      Called By: SM2_KeyGeneration
      Input: point
      Output: null
      Return: 0: sucess
      3: not a valid point on curve
      Others:
      ****************************************************************/
      int Test_Point(epoint* point)
      {
      	big x, y, x_3, tmp;
      	x = mirvar(0);
      	y = mirvar(0);
      	x_3 = mirvar(0);
      	tmp = mirvar(0);
      	//test if y^2=x^3+ax+b
      	epoint_get(point, x, y);
      	power(x, 3, p, x_3); //x_3=x^3 mod p
      	multiply(x, a, x); //x=a*x
      	divide(x, p, tmp); //x=a*x mod p , tmp=a*x/p
      	add(x_3, x, x); //x=x^3+ax
      	add(x, b, x); //x=x^3+ax+b
      	divide(x, p, tmp); //x=x^3+ax+b mod p
      	power(y, 2, p, y); //y=y^2 mod p
      	if (mr_compare(x, y) != 0)
      		return ERR_NOT_VALID_POINT;
      	else
      		return 0;
      }
      /****************************************************************
      Function: Test_PubKey
      Description: test if the given public key is valid
      Calls:
      Called By: SM2_KeyGeneration
      Input: pubKey //a point
      Output: null
      Return: 0: sucess
      2: a point at infinity
      5: X or Y coordinate is beyond Fq
      3: not a valid point on curve
      4: not a point of order n
      Others:
      ****************************************************************/
      int Test_PubKey(epoint *pubKey)
      {
      	big x, y, x_3, tmp;
      	epoint *nP;
      	x = mirvar(0);
      	y = mirvar(0);
      	x_3 = mirvar(0);
      	tmp = mirvar(0);
      	nP = epoint_init();
      	//test if the pubKey is the point at infinity
      	if (point_at_infinity(pubKey))// if pubKey is point at infinity, return error;
      		return ERR_INFINITY_POINT;
      	//test if x<p and y<p both hold
      	epoint_get(pubKey, x, y);
      	if ((mr_compare(x, p) != -1) || (mr_compare(y, p) != -1))
      		return ERR_NOT_VALID_ELEMENT;
      	if (Test_Point(pubKey) != 0)
      		return ERR_NOT_VALID_POINT;
      	//test if the order of pubKey is equal to n
      	ecurve_mult(n, pubKey, nP); // nP=[n]P
      	if (!point_at_infinity(nP)) // if np is point NOT at infinity, return error;
      		return ERR_ORDER;
      	return 0;
      }
      /****************************************************************
      Function: Test_Zero
      Description: test if the big x is zero
      Calls:
      Called By: SM2_Sign
      Input: pubKey //a point
      Output: null
      Return: 0: x!=0
      1: x==0
      Others:
      ****************************************************************/
      int Test_Zero(big x)
      {
      	big zero;
      	zero = mirvar(0);
      	if (mr_compare(x, zero) == 0)
      		return 1;
      	else return 0;
      }
      /****************************************************************
      Function: Test_n
      Description: test if the big x is order n
      Calls:
      Called By: SM2_Sign
      Input: big x //a miracl data type
      Output: null
      Return: 0: sucess
      1: x==n,fail
      Others:
      ****************************************************************/
      int Test_n(big x)
      {
      	// bytes_to_big(32,SM2_n,n);
      	if (mr_compare(x, n) == 0)
      		return 1;
      	else return 0;
      }
      /****************************************************************
      Function: Test_Range
      Description: test if the big x belong to the range[1,n-1]
      Calls:
      Called By: SM2_Verify
      Input: big x ///a miracl data type
      Output: null
      Return: 0: sucess
      1: fail
      Others:
      ****************************************************************/
      int Test_Range(big x)
      {
      	big one, decr_n;
      	one = mirvar(0);
      	decr_n = mirvar(0);
      	convert(1, one);
      	decr(n, 1, decr_n);
      	if ((mr_compare(x, one) < 0) | (mr_compare(x, decr_n) > 0))
      		return 1;
      	return 0;
      }
      /****************************************************************
      Function: SM2_KeyGeneration
      Description: calculate a pubKey out of a given priKey
      Calls: SM2_SelfCheck()
      Called By: SM2_Init()
      Input: priKey // a big number lies in[1,n-2]
      Output: pubKey // pubKey=[priKey]G
      Return: 0: sucess
      2: a point at infinity
      5: X or Y coordinate is beyond Fq
      3: not a valid point on curve
      4: not a point of order n
      Others:
      ****************************************************************/
      int SM2_KeyGeneration(unsigned char PriKey[], unsigned char Px[], unsigned char Py[])
      {
      	int i = 0;
      	big d, PAx, PAy;
      	epoint *PA;
      	SM2_Init();
      	PA = epoint_init();
      	d = mirvar(0);
      	PAx = mirvar(0);
      	PAy = mirvar(0);
      	bytes_to_big(SM2_NUMWORD, PriKey, d);
      	ecurve_mult(d, G, PA);
      	epoint_get(PA, PAx, PAy);
      	big_to_bytes(SM2_NUMWORD, PAx, Px, TRUE);
      	big_to_bytes(SM2_NUMWORD, PAy, Py, TRUE);
      	i = Test_PubKey(PA);
      	if (i)
      		return i;
      	else
      		return 0;
      }
      /****************************************************************
      Function: SM2_Sign
      Description: SM2 signature algorithm
      Calls: SM2_Init(),Test_Zero(),Test_n(), SM3_256()
      Called By: SM2_SelfCheck()
      Input: message //the message to be signed
      len //the length of message
      ZA // ZA=Hash(ENTLA|| IDA|| a|| b|| Gx || Gy || xA|| yA)
      rand //a random number K lies in [1,n-1]
      d //the private key
      Output: R,S //signature result
      Return: 0: sucess
      1: parameter initialization error;
      4: the given point G is not a point of order n
      6: the signed r equals 0 or r+rand equals n
      7 the signed s equals 0
      Others:
      ****************************************************************/
      int SM2_Sign(unsigned char *message, int len, unsigned char ZA[], unsigned char rand[], unsigned char d[], unsigned char R[], unsigned char S[])
      {
      	unsigned char hash[SM3_len / 8];
      	int M_len = len + SM3_len / 8;
      	unsigned char *M = NULL;
      	int i;
      	big dA, r, s, e, k, KGx, KGy;
      	big rem, rk, z1, z2;
      	epoint *KG;
      	i = SM2_Init();
      	if (i) return i;
      	//initiate
      	dA = mirvar(0);
      	e = mirvar(0);
      	k = mirvar(0);
      	KGx = mirvar(0);
      	KGy = mirvar(0);
      	r = mirvar(0);
      	s = mirvar(0);
      	rem = mirvar(0);
      	rk = mirvar(0);
      	z1 = mirvar(0);
      	z2 = mirvar(0);
      	bytes_to_big(SM2_NUMWORD, d, dA);//cinstr(dA,d);
      	KG = epoint_init();
      	//step1,set M=ZA||M
      	M = (char *)malloc(sizeof(char)*(M_len + 1));
      	memcpy(M, ZA, SM3_len / 8);
      	memcpy(M + SM3_len / 8, message, len);
      	//step2,generate e=H(M)
      	SM3_256(M, M_len, hash);
      	bytes_to_big(SM3_len / 8, hash, e);
      	//step3:generate k
      	bytes_to_big(SM3_len / 8, rand, k);
      	//step4:calculate kG
      	ecurve_mult(k, G, KG);
      	//step5:calculate r
      	epoint_get(KG, KGx, KGy);
      	add(e, KGx, r);
      	divide(r, n, rem);
      	//judge r=0 or n+k=n?
      	add(r, k, rk);
      	if (Test_Zero(r) | Test_n(rk))
      		return ERR_GENERATE_R;
      	//step6:generate s
      	incr(dA, 1, z1);
      	xgcd(z1, n, z1, z1, z1);
      	multiply(r, dA, z2);
      	divide(z2, n, rem);
      	subtract(k, z2, z2);
      	add(z2, n, z2);
      	multiply(z1, z2, s);
      	divide(s, n, rem);
      	//judge s=0?
      	if (Test_Zero(s))
      		return ERR_GENERATE_S;
      	big_to_bytes(SM2_NUMWORD, r, R, TRUE);
      	big_to_bytes(SM2_NUMWORD, s, S, TRUE);
      	free(M);
      	return 0;
      }
      /****************************************************************
      Function: SM2_Verify
      Description: SM2 verification algorithm
      Calls: SM2_Init(),Test_Range(), Test_Zero(),SM3_256()
      Called By: SM2_SelfCheck()
      Input: message //the message to be signed
      len //the length of message
      ZA //ZA=Hash(ENTLA|| IDA|| a|| b|| Gx || Gy || xA|| yA)
      Px,Py //the public key
      R,S //signature result
      Output:
      Return: 0: sucess
      1: parameter initialization error;
      4: the given point G is not a point of order n
      B: public key error
      8: the signed R out of range [1,n-1]
      9: the signed S out of range [1,n-1]
      A: the intermediate data t equals 0
      C: verification fail
      Others:
      ****************************************************************/
      int SM2_Verify(unsigned char *message, int len, unsigned char ZA[], unsigned char Px[], unsigned char Py[], unsigned char R[], unsigned char S[])
      {
      	unsigned char hash[SM3_len / 8];
      	int M_len = len + SM3_len / 8;
      	unsigned char *M = NULL;
      	int i;
      	big PAx, PAy, r, s, e, t, rem, x1, y1;
      	big RR;
      	epoint *PA, *sG, *tPA;
      	i = SM2_Init();
      	if (i) return i;
      	PAx = mirvar(0);
      	PAy = mirvar(0);
      	r = mirvar(0);
      	s = mirvar(0);
      	e = mirvar(0);
      	t = mirvar(0);
      	x1 = mirvar(0);
      	y1 = mirvar(0);
      	rem = mirvar(0);
      	RR = mirvar(0);
      	PA = epoint_init();
      	sG = epoint_init();
      	tPA = epoint_init();
      	bytes_to_big(SM2_NUMWORD, Px, PAx);
      	bytes_to_big(SM2_NUMWORD, Py, PAy);
      	bytes_to_big(SM2_NUMWORD, R, r);
      	bytes_to_big(SM2_NUMWORD, S, s);
      	if (!epoint_set(PAx, PAy, 0, PA))//initialise public key
      	{
      		return ERR_PUBKEY_INIT;
      	}
      	//step1: test if r belong to [1,n-1]
      	if (Test_Range(r))
      		return ERR_OUTRANGE_R;
      	//step2: test if s belong to [1,n-1]
      	if (Test_Range(s))
      		return ERR_OUTRANGE_S;
      	//step3,generate M
      	M = (char *)malloc(sizeof(char)*(M_len + 1));
      	memcpy(M, ZA, SM3_len / 8);
      	memcpy(M + SM3_len / 8, message, len);
      	//step4,generate e=H(M)
      	SM3_256(M, M_len, hash);
      	bytes_to_big(SM3_len / 8, hash, e);
      	//step5:generate t
      	add(r, s, t);
      	divide(t, n, rem);
      	if (Test_Zero(t))
      		return ERR_GENERATE_T;
      	//step 6: generate(x1,y1)
      	ecurve_mult(s, G, sG);
      	ecurve_mult(t, PA, tPA);
      	ecurve_add(sG, tPA);
      	epoint_get(tPA, x1, y1);
      	//step7:generate RR
      	add(e, x1, RR);
      	divide(RR, n, rem);
      	free(M);
      	if (mr_compare(RR, r) == 0)
      		return 0;
      	else
      		return ERR_DATA_MEMCMP;
      }
      /****************************************************************
      Function: SM2_SelfCheck
      Description: SM2 self check
      Calls: SM2_Init(), SM2_KeyGeneration,SM2_Sign, SM2_Verify,SM3_256()
      Called By:
      Input:
      Output:
      Return: 0: sucess
      1: paremeter initialization error
      2: a point at infinity
      5: X or Y coordinate is beyond Fq
      3: not a valid point on curve
      4: not a point of order n
      B: public key error
      8: the signed R out of range [1,n-1]
      9: the signed S out of range [1,n-1]
      A: the intermediate data t equals 0
      C: verification fail
      Others:
      ****************************************************************/
      int SM2_SelfCheck()
      {
      	//the private key
      	unsigned char dA[32] = { 0x39,0x45,0x20,0x8f,0x7b,0x21,0x44,0xb1,0x3f,0x36,0xe3,0x8a,0xc6,0xd3,0x9f,
      	0x95,0x88,0x93,0x93,0x69,0x28,0x60,0xb5,0x1a,0x42,0xfb,0x81,0xef,0x4d,0xf7,0xc5,0xb8 };
      	unsigned char rand[32] = { 0x59,0x27,0x6E,0x27,0xD5,0x06,0x86,0x1A,0x16,0x68,0x0F,0x3A,0xD9,0xC0,0x2D,
      	0xCC,0xEF,0x3C,0xC1,0xFA,0x3C,0xDB,0xE4,0xCE,0x6D,0x54,0xB8,0x0D,0xEA,0xC1,0xBC,0x21 };
      	//the public key
      	/* unsigned char xA[32]={0x09,0xf9,0xdf,0x31,0x1e,0x54,0x21,0xa1,0x50,0xdd,0x7d,0x16,0x1e,0x4b,0xc5,
      	0xc6,0x72,0x17,0x9f,0xad,0x18,0x33,0xfc,0x07,0x6b,0xb0,0x8f,0xf3,0x56,0xf3,0x50,0x20};
      	unsigned char yA[32]={0xcc,0xea,0x49,0x0c,0xe2,0x67,0x75,0xa5,0x2d,0xc6,0xea,0x71,0x8c,0xc1,0xaa,
      	0x60,0x0a,0xed,0x05,0xfb,0xf3,0x5e,0x08,0x4a,0x66,0x32,0xf6,0x07,0x2d,0xa9,0xad,0x13};*/
      	unsigned char xA[32], yA[32];
      	unsigned char r[32], s[32];// Signature
      	unsigned char IDA[16] = { 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x31,0x32,0x33,
      	0x34,0x35,0x36,0x37,0x38 };//ASCII code of userA's identification
      	int IDA_len = 16;
      	unsigned char ENTLA[2] = { 0x00,0x80 };//the length of userA's identification,presentation in ASCII code
      	unsigned char *message = "message digest";//the message to be signed
      	int len = strlen(message);//the length of message
      	unsigned char ZA[SM3_len / 8];//ZA=Hash(ENTLA|| IDA|| a|| b|| Gx || Gy || xA|| yA)
      	unsigned char Msg[210]; //210=IDA_len+2+SM2_NUMWORD*6
      	int temp;
      	miracl *mip = mirsys(10000, 16);
      	mip->IOBASE = 16;
      	temp = SM2_KeyGeneration(dA, xA, yA);
      	if (temp)
      		return temp;
      	// ENTLA|| IDA|| a|| b|| Gx || Gy || xA|| yA
      	memcpy(Msg, ENTLA, 2);
      	memcpy(Msg + 2, IDA, IDA_len);
      	memcpy(Msg + 2 + IDA_len, SM2_a, SM2_NUMWORD);
      	memcpy(Msg + 2 + IDA_len + SM2_NUMWORD, SM2_b, SM2_NUMWORD);
      	memcpy(Msg + 2 + IDA_len + SM2_NUMWORD * 2, SM2_Gx, SM2_NUMWORD);
      	memcpy(Msg + 2 + IDA_len + SM2_NUMWORD * 3, SM2_Gy, SM2_NUMWORD);
      	memcpy(Msg + 2 + IDA_len + SM2_NUMWORD * 4, xA, SM2_NUMWORD);
      	memcpy(Msg + 2 + IDA_len + SM2_NUMWORD * 5, yA, SM2_NUMWORD);
      	SM3_256(Msg, 210, ZA);
      	temp = SM2_Sign(message, len, ZA, rand, dA, r, s);
      	if (temp)
      		return temp;
      	temp = SM2_Verify(message, len, ZA, xA, yA, r, s);
      	if (temp)
      		return temp;
      	return 0;
      }
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat SM2_sv.h
      #pragma once
       
       
      #include<string.h>
      #include<malloc.h>
      #include "miracl.h"
      #define SM2_WORDSIZE 8
      #define SM2_NUMBITS 256
      #define SM2_NUMWORD (SM2_NUMBITS/SM2_WORDSIZE) //32
      #define ERR_ECURVE_INIT 0x00000001
      #define ERR_INFINITY_POINT 0x00000002
      #define ERR_NOT_VALID_POINT 0x00000003
      #define ERR_ORDER 0x00000004
      #define ERR_NOT_VALID_ELEMENT 0x00000005
      #define ERR_GENERATE_R 0x00000006
      #define ERR_GENERATE_S 0x00000007
      #define ERR_OUTRANGE_R 0x00000008
      #define ERR_OUTRANGE_S 0x00000009
      #define ERR_GENERATE_T 0x0000000A
      #define ERR_PUBKEY_INIT 0x0000000B
      #define ERR_DATA_MEMCMP 0x0000000C
      
      
      
      extern unsigned char SM2_p[32];
      extern unsigned char SM2_a[32];
      extern unsigned char SM2_b[32];
      extern unsigned char SM2_n[32];
      extern unsigned char SM2_Gx[32];
      extern unsigned char SM2_Gy[32];
      extern unsigned char SM2_h[32];
      
      
      
      
      big Gx, Gy, p, a, b, n;
      epoint *G, *nG;
      int SM2_Init();
      int Test_Point(epoint* point);
      int Test_PubKey(epoint *pubKey);
      int Test_Zero(big x);
      int Test_n(big x);
      int Test_Range(big x);
      int SM2_KeyGeneration(unsigned char PriKey[], unsigned char Px[], unsigned char Py[]);
      int SM2_Sign(unsigned char *message, int len, unsigned char ZA[], unsigned char rand[], unsigned char d[], unsigned char R[], unsigned char S[]);
      int SM2_Verify(unsigned char *message, int len, unsigned char ZA[], unsigned char Px[], unsigned char Py[], unsigned char R[], unsigned char S[]);
      int SM2_SelfCheck();
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat test.c
      
      #include "SM2_sv.h"
      
      void main()
      {
      	if (SM2_SelfCheck())
      	{
      		puts("SM2簽名驗簽出錯");
      		return;
      	}
      	puts("SM2簽名驗簽成功");
      }
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ cat Makefile
      # Makefile for SM2 Signature and Verification
      
      # Compiler settings
      CC = gcc
      CFLAGS = -Wall -Wextra -std=c99 -I. # Add -g for debug information
      LDFLAGS = -L. -lmymiracl # Assuming the MIRACL library is named libmymiracl.a
      
      # Source files
      SOURCES = kdf.c SM2_sv.c test.c
      HEADERS = kdf.h SM2_sv.h miracl.h mirdef.h
      
      # Object files
      OBJECTS = $(SOURCES:.c=.o)
      
      # Executable name
      EXECUTABLE = test
      
      # Default target
      all: $(EXECUTABLE)
      
      # Link the executable
      $(EXECUTABLE): $(OBJECTS)
      	$(CC) $(LDFLAGS) $(OBJECTS) -o $@
      
      # Compile source files
      %.o: %.c $(HEADERS)
      	$(CC) $(CFLAGS) -c $< -o $@
      
      # Clean build artifacts
      clean:
      	rm -f $(OBJECTS) $(EXECUTABLE)
      
      # Run the test
      run: $(EXECUTABLE)
      	./$(EXECUTABLE)
      
      # Phony targets
      .PHONY: all clean run
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ make
      gcc -Wall -Wextra -std=c99 -I.  -c kdf.c -o kdf.o
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ 
      ./test
      SM2簽名驗簽成功
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ git add kdf.c  kdf.h  Makefile  miracl.h  mirdef.h  SM2_sv.c  SM2_sv.h  test.c
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ git commit -m "sm2 qian ming yan qian jiao cai dai ma"
      [master df9ed53] sm2 jia mi jie mi jiao cai dai ma
       8 files changed, 2584 insertions(+)
       create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/Makefile
       create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/SM2_sv.c
       create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/SM2_sv.h
       create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/kdf.c
       create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/kdf.h
       create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/miracl.h
       create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/mirdef.h
       create mode 100644 20221320fengtairui/sm2qianmingjiaocaidaima/test.c
      fengtairui@fengtairui-virtual-machine:~/20221320fengtairui/sm2qianmingjiaocaidaima$ git log
      commit df9ed537ac1b8629da6938fadc4981a9a3fcbf17 (HEAD -> master)
      Author: fengtairui <1978274655@qq.com>
      Date:   Sun Nov 3 23:35:57 2024 +0800
      
          sm2 qian ming yan qian jiao cai dai ma
      
      命令行驗證
      自驗證成功
      

      SM3

      源代碼運行

      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ gcc -o sm33 sm33.c
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ ./sm33
      消息:abcd
      Hash結果:
      82ec580fe6d36ae4f81cae3c73f4a5b3b5a09c943172dc9053c69fd8e18dca1e
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ gcc -o sm31 sm31.c
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ ./sm31
      消息:abc
      Hash結果:
      len=32
      66 c7 f0 f4 62 ee ed d9 d1 f2 d4 6b dc 10 e4 e2 
      41 67 c4 87 5c f2 f7 a2 29 7d a0 2b 8f 4b a8 e0 
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ cat sm33.c
      // sm3_test.c: 實現SM3哈希算法并測試對"abc"的哈希結果  
      #include <stdio.h>  
      #include <stdint.h>  
      #include <string.h>  
      #include <stdlib.h>  
      
      // SM3 初始向量  
      const uint32_t SM3_IV[8] = {  
          0x7380166F,  
          0x4914B2B9,  
          0x172442D7,  
          0xDA8A0600,  
          0xA96F30BC,  
          0x163138AA,  
          0xE38DEE4D,  
          0xB0FB0E4E  
      };  
      
      // SM3 上下文結構體  
      typedef struct {  
          uint32_t total[2];    // 消息長度,以位為單位  
          uint32_t state[8];    // 哈希狀態  
          unsigned char buffer[64]; // 數據緩沖區  
      } sm3_context;  
      
      // 大端序讀取4字節為一個32位無符號整數  
      #define GET_ULONG_BE(n,b,i)                             \
          do {                                                \
              (n) = ((uint32_t)(b)[(i)] << 24)             \
                  | ((uint32_t)(b)[(i) + 1] << 16)         \
                  | ((uint32_t)(b)[(i) + 2] << 8)          \
                  | ((uint32_t)(b)[(i) + 3]);              \
          } while(0)  
      
      // 大端序寫入32位無符號整數為4字節  
      #define PUT_ULONG_BE(n,b,i)                             \
          do {                                                \
              (b)[(i)]     = (unsigned char)((n) >> 24);    \
              (b)[(i) + 1] = (unsigned char)((n) >> 16);    \
              (b)[(i) + 2] = (unsigned char)((n) >> 8);     \
              (b)[(i) + 3] = (unsigned char)((n));          \
          } while(0)  
      
      // SM3 循環左移  
      #define ROTL(x,n) (((x) << (n)) | ((x) >> (32 - (n))))  
      
      // 定義布爾函數  
      #define FF0(x,y,z) ((x) ^ (y) ^ (z))  
      #define FF1(x,y,z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))  
      #define GG0(x,y,z) ((x) ^ (y) ^ (z))  
      #define GG1(x,y,z) (((x) & (y)) | ((~(x)) & (z)))  
      
      // 非線性變換函數  
      #define P0(x) ((x) ^ ROTL((x),9) ^ ROTL((x),17))  
      #define P1(x) ((x) ^ ROTL((x),15) ^ ROTL((x),23))  
      
      // SM3 常量函數 Tj  
      #define Tj(j) ((j) <= 15 ? 0x79CC4519 : 0x7A879D8A)  
      
      // 填充常量  
      static const unsigned char sm3_padding[64] = {  
          0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 后續填充為0 */  
          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* ...重復...*/  
          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* ...共64個...*/  
          0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
          0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
          0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
          0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
          0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
          0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
          0x00, 0x00, 0x00, 0x00, 0x00, 0x00,   
          0x00, 0x00, 0x00, 0x00  
      };  
      
      // SM3 初始化  
      void sm3_starts(sm3_context *ctx) {  
          ctx->total[0] = 0;  
          ctx->total[1] = 0;  
          memcpy(ctx->state, SM3_IV, sizeof(SM3_IV));  
      }  
      
      // SM3 處理一個64字節的數據塊  
      static void sm3_process(sm3_context *ctx, const unsigned char data[64]) {  
          uint32_t W[68], W1[64], A, B, C, D, E, F, G, H;  
          uint32_t SS1, SS2, TT1, TT2;  
          int j;  
      
          // 消息擴展  
          for (j = 0; j < 16; j++) {  
              GET_ULONG_BE(W[j], data, j * 4);  
          }  
          for (j = 16; j < 68; j++) {  
              W[j] = P1(W[j - 16] ^ W[j - 9] ^ ROTL(W[j - 3], 15)) ^ ROTL(W[j - 13], 7) ^ W[j - 6];  
          }  
          for (j = 0; j < 64; j++) {  
              W1[j] = W[j] ^ W[j + 4];  
          }  
      
          // 初始化寄存器  
          A = ctx->state[0];  
          B = ctx->state[1];  
          C = ctx->state[2];  
          D = ctx->state[3];  
          E = ctx->state[4];  
          F = ctx->state[5];  
          G = ctx->state[6];  
          H = ctx->state[7];  
      
          // 壓縮函數  
          for (j = 0; j < 64; j++) {  
              SS1 = ROTL((ROTL(A, 12) + E + ROTL(Tj(j), j % 32)), 7);  
              SS2 = SS1 ^ ROTL(A, 12);  
              TT1 = (j <= 15 ? FF0(A, B, C) : FF1(A, B, C)) + D + SS2 + W1[j];  
              TT2 = (j <= 15 ? GG0(E, F, G) : GG1(E, F, G)) + H + SS1 + W[j];  
              D = C;  
              C = ROTL(B, 9);  
              B = A;  
              A = TT1;  
              H = G;  
              G = ROTL(F, 19);  
              F = E;  
              E = P0(TT2);  
          }  
      
          // 更新狀態  
          ctx->state[0] ^= A;  
          ctx->state[1] ^= B;  
          ctx->state[2] ^= C;  
          ctx->state[3] ^= D;  
          ctx->state[4] ^= E;  
          ctx->state[5] ^= F;  
          ctx->state[6] ^= G;  
          ctx->state[7] ^= H;  
      }  
      
      // SM3 更新函數  
      void sm3_update(sm3_context *ctx, const unsigned char *input, int ilen) {  
          int fill;  
          uint32_t left;  
      
          if (ilen <= 0)  
              return;  
      
          left = ctx->total[0] & 0x3F;  
          fill = 64 - left;  
      
          ctx->total[0] += ilen;  
          if (ctx->total[0] < (uint32_t)ilen)  
              ctx->total[1]++;  
      
          if (left && ilen >= fill) {  
              memcpy(ctx->buffer + left, input, fill);  
              sm3_process(ctx, ctx->buffer);  
              input += fill;  
              ilen -= fill;  
              left = 0;  
          }  
      
          while (ilen >= 64) {  
              sm3_process(ctx, input);  
              input += 64;  
              ilen -= 64;  
          }  
      
          if (ilen > 0) {  
              memcpy(ctx->buffer + left, input, ilen);  
          }  
      }  
      
      // SM3 完成并輸出哈希值  
      void sm3_finish(sm3_context *ctx, unsigned char output[32]) {  
          unsigned long high, low;  
          unsigned long last, padn;  
          unsigned char msglen[8];  
      
          high = (ctx->total[0] >> 29) | (ctx->total[1] << 3);  
          low = (ctx->total[0] << 3);  
      
          PUT_ULONG_BE(high, msglen, 0);  
          PUT_ULONG_BE(low, msglen, 4);  
      
          last = ctx->total[0] & 0x3F;  
          padn = (last < 56) ? (56 - last) : (120 - last);  
      
          sm3_update(ctx, sm3_padding, padn);  
          sm3_update(ctx, msglen, 8);  
      
          PUT_ULONG_BE(ctx->state[0], output, 0);  
          PUT_ULONG_BE(ctx->state[1], output, 4);  
          PUT_ULONG_BE(ctx->state[2], output, 8);  
          PUT_ULONG_BE(ctx->state[3], output, 12);  
          PUT_ULONG_BE(ctx->state[4], output, 16);  
          PUT_ULONG_BE(ctx->state[5], output, 20);  
          PUT_ULONG_BE(ctx->state[6], output, 24);  
          PUT_ULONG_BE(ctx->state[7], output, 28);  
      }  
      
      // 單次調用 SM3 算法  
      void sm3(const unsigned char *input, int ilen, unsigned char output[32]) {  
          sm3_context ctx;  
      
          sm3_starts(&ctx);  
          sm3_update(&ctx, input, ilen);  
          sm3_finish(&ctx, output);  
      
          memset(&ctx, 0, sizeof(sm3_context)); // 清零上下文  
      }  
      
      // 打印緩沖區為十六進制  
      void dumpbuf(const unsigned char *buf, int len) {  
          for (int i = 0; i < len; i++) {  
              printf("%02x", buf[i]);  
          }  
          printf("\n");  
      }  
      
      // 主函數,用于測試對"abc"的 SM3 哈希  
      int main(void) {  
          const unsigned char data[] = "abcd";  
          unsigned char hash[32];  
      
          printf("消息:%s\nHash結果:\n", data);  
          sm3(data, strlen((const char*)data), hash);  
          dumpbuf(hash, 32);  
      
          return 0;  
      }
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ cat sm31.c
      // sm3.c: SM3 哈希實現并在 Linux 下運行  
      #include <stdio.h>  
      #include <stdint.h>  
      #include <string.h>  
      #include <stdlib.h>  
      
      // SM3 初始向量  
      const uint8_t IV[32] = {  
          0x73, 0x80, 0x16, 0x6F, 0x49, 0x14, 0xB2, 0xB9,  
          0x17, 0x24, 0x42, 0xD7, 0xDA, 0x8A, 0x06, 0x00,  
          0xA9, 0x6F, 0x30, 0xBC, 0x16, 0x31, 0x38, 0xAA,  
          0xE3, 0x8D, 0xEE, 0x4D, 0xB0, 0xFB, 0x0E, 0x4E  
      };  
      
      // 循環左移(32位)  
      uint32_t ROTL(uint32_t x, int n) {  
          return (x << n) | (x >> (32 - n));  
      }  
      
      // 常量函數 Tj  
      uint32_t Tj(int j) {  
          return (j <= 15) ? 0x79CC4519 : 0x7A879D8A;  
      }  
      
      // 布爾函數 FFj  
      uint32_t FFj(int j, uint32_t X, uint32_t Y, uint32_t Z) {  
          return (j <= 15) ? (X ^ Y ^ Z) : ((X & Y) | (X & Z) | (Y & Z));  
      }  
      
      // 布爾函數 GGj  
      uint32_t GGj(int j, uint32_t X, uint32_t Y, uint32_t Z) {  
          return (j <= 15) ? (X ^ Y ^ Z) : ((X & Y) | (~X & Z));  
      }  
      
      // 非線性變換函數 P0  
      uint32_t P0(uint32_t X) {  
          return X ^ ROTL(X, 9) ^ ROTL(X, 17);  
      }  
      
      // 非線性變換函數 P1  
      uint32_t P1(uint32_t X) {  
          return X ^ ROTL(X, 15) ^ ROTL(X, 23);  
      }  
      
      // 擴展函數 EB  
      void EB(const uint8_t Bi[64], uint32_t W[68], uint32_t W1[64]) {  
          // 將 Bi 分為 W0~W15  
          for (int i = 0; i < 16; ++i) {  
              W[i] = (Bi[i * 4] << 24) | (Bi[i * 4 + 1] << 16) |  
                     (Bi[i * 4 + 2] << 8) | (Bi[i * 4 + 3]);  
          }  
      
          // 擴展 W16~W67  
          for (int j = 16; j <= 67; ++j) {  
              W[j] = P1(W[j - 16] ^ W[j - 9] ^ ROTL(W[j - 3], 15)) ^  
                     ROTL(W[j - 13], 7) ^ W[j - 6];  
          }  
      
          // 計算 W1  
          for (int j = 0; j < 64; ++j) {  
              W1[j] = W[j] ^ W[j + 4];  
          }  
      }  
      
      // 壓縮函數 CF  
      void CF(const uint8_t Vi[32], const uint8_t Bi[64], uint8_t Vi1[32]) {  
          uint32_t W[68] = {0};  
          uint32_t W1[64] = {0};  
      
          EB(Bi, W, W1);  
      
          // 將 Vi 分為 A, B, C, D, E, F, G, H  
          uint32_t R[8];  
          for (int i = 0; i < 8; ++i) {  
              R[i] = (Vi[i * 4] << 24) | (Vi[i * 4 + 1] << 16) |  
                     (Vi[i * 4 + 2] << 8) | (Vi[i * 4 + 3]);  
          }  
      
          uint32_t A = R[0], B_val = R[1], C = R[2], D = R[3];  
          uint32_t E = R[4], F = R[5], G = R[6], H = R[7];  
          uint32_t SS1, SS2, TT1, TT2;  
      
          for (int j = 0; j < 64; ++j) {  
              SS1 = ROTL((ROTL(A, 12) + E + ROTL(Tj(j), j % 32)), 7);  
              SS2 = SS1 ^ ROTL(A, 12);  
              TT1 = FFj(j, A, B_val, C) + D + SS2 + W1[j];  
              TT2 = GGj(j, E, F, G) + H + SS1 + W[j];  
              D = C;  
              C = ROTL(B_val, 9);  
              B_val = A;  
              A = TT1;  
              H = G;  
              G = ROTL(F, 19);  
              F = E;  
              E = P0(TT2);  
          }  
      
          // 將 ABCDEFGH 重新打包  
          R[0] = A; R[1] = B_val; R[2] = C; R[3] = D;  
          R[4] = E; R[5] = F; R[6] = G; R[7] = H;  
      
          uint8_t ABCDEFGH[32];  
          for (int i = 0; i < 8; ++i) {  
              ABCDEFGH[i * 4]     = (R[i] >> 24) & 0xFF;  
              ABCDEFGH[i * 4 + 1] = (R[i] >> 16) & 0xFF;  
              ABCDEFGH[i * 4 + 2] = (R[i] >> 8) & 0xFF;  
              ABCDEFGH[i * 4 + 3] = R[i] & 0xFF;  
          }  
      
          // Vi1 = ABCDEFGH ^ Vi  
          for (int i = 0; i < 32; ++i) {  
              Vi1[i] = ABCDEFGH[i] ^ Vi[i];  
          }  
      }  
      
      // 參數 m 是原始數據,ml 是數據長度(字節數),r 是輸出參數,存放 hash 結果  
      void SM3Hash(const uint8_t* m, int ml, uint8_t r[32]) {  
          uint64_t l = (uint64_t)ml * 8;  
          int k = (448 - (l + 1)) % 512;  
          if (k < 0) {  
              k += 512;  
          }  
      
          int total_bits = l + 1 + k + 64;  
          int n = total_bits / 512;  
      
          int m1l = n * 512 / 8; // 填充后的長度,512 位的倍數  
          uint8_t* m1 = (uint8_t*)calloc(m1l, sizeof(uint8_t));  
          if (m1 == NULL) {  
              fprintf(stderr, "Memory allocation failed.\n");  
              exit(1);  
          }  
          memcpy(m1, m, ml);  
      
          m1[ml] = 0x80; // 消息后補 1(10000000)  
      
          // 添加長度 l 的 64 位大端表示  
          for (int i = 0; i < 8; ++i) {  
              m1[m1l - 1 - i] = (l >> (i * 8)) & 0xFF;  
          }  
      
          // 將填充后的消息 m′ 按 512 比特進行分組  
          const int BLOCK_SIZE = 64; // 512 位 / 8 = 64 字節  
          uint8_t V[32];  
          memcpy(V, IV, 32);  
      
          for (int i = 0; i < n; ++i) {  
              CF(V, m1 + i * BLOCK_SIZE, V);  
          }  
      
          memcpy(r, V, 32);  
      
          free(m1);  
      }  
      
      // 打印緩沖區  
      void dumpbuf(const uint8_t* buf, int len) {  
          printf("len=%d\n", len);  
          for (int i = 0; i < len; i++) {  
              printf("%02x ", buf[i]);  
              if ((i + 1) % 16 == 0)  
                  putchar('\n');  
          }  
          if (len % 16 != 0)  
              putchar('\n');  
      }  
      
      // 主函數  
      int main(void) {  
          const uint8_t data[] = "abc";  
          uint8_t r[32];  
          printf("消息:%s\nHash結果:\n", data);  
          SM3Hash(data, strlen((const char*)data), r);  
          dumpbuf(r, 32);  
          return 0;  
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ git add sm33.c sm31.c sm31 sm33
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ git commit -m "sm3 jiao cai dai ma yan zheng"
      [master c533a62] sm3 jiao cai dai ma yan zheng
       2 files changed, 0 insertions(+), 0 deletions(-)
       create mode 100755 ch03/sm3/sm31
       create mode 100755 ch03/sm3/sm33
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm3$ git log
      commit c533a62670c7dbd5dd8b2bbf7461b5d51458f68e (HEAD -> master)
      Author: fengtairui <1978274655@qq.com>
      Date:   Sun Nov 3 10:17:16 2024 +0800
      
          sm3 jiao cai dai ma yan zheng
      

      命令行驗證

      fengtairui@fengtairui-virtual-machine:~$ echo -n "abcd" | gmssl sm3
      82ec580fe6d36ae4f81cae3c73f4a5b3b5a09c943172dc9053c69fd8e18dca1e
      fengtairui@fengtairui-virtual-machine:~$ echo -n "abc" | gmssl sm3
      66c7f0f462eeedd9d1f2d46bdc10e4e24167c4875cf2f7a2297da02b8f4ba8e0
      

      SM4

      源代碼運行

      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ tree
      .
      ├── Makefile
      ├── sm4.c
      ├── sm4.h
      └── test.c
      
      1 directory, 4 files
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ make
      gcc   -Wall -g   -c sm4.c  
      gcc   -Wall -g   -c test.c  
      gcc   -Wall -g   -o testsm416 sm4.o test.o    
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ ./testsm416
      明文 (十六進制): 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 
      密文 (十六進制): 68 1E DF 34 D2 06 96 5E 86 B3 E9 4F 53 6E 42 46 
      解密后的明文 (十六進制): 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 
      sm4(16 Bytes ok!)
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ cat Makefile
      # 定義編譯器  
      CC = gcc  
      
      # 編譯選項  
      CFLAGS = -Wall -g  
      
      # 目標可執行文件的名稱  
      TARGET = testsm416 
      
      # 源文件  
      SRCS = sm4.c test.c  
      
      # 頭文件  
      HEADERS = sm4.h  
      
      # 生成的對象文件  
      OBJS = sm4.o test.o  
      
      # 默認目標  
      all: $(TARGET)  
      
      # 鏈接生成可執行文件  
      $(TARGET): $(OBJS)  
      	$(CC) $(CFLAGS) -o $@ $(OBJS)  
      
      # 編譯 sm4.o  
      sm4.o: sm4.c sm4.h  
      	$(CC) $(CFLAGS) -c sm4.c  
      
      # 編譯 test.o  
      test.o: test.c sm4.h  
      	$(CC) $(CFLAGS) -c test.c  
      
      # 清理生成的文件  
      clean:  
      	rm -f $(OBJS) $(TARGET)
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ cat test.c
      #include "sm4.h"
      
      int main()
      {
      	SM4_SelfCheck();
      }
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ cat sm4.c
      #include "sm4.h"
      #include <stdio.h>
      
      #define SM4_Rotl32(buf, n) (((buf)<<n)|((buf)>>(32-n)))
      
      
      
      unsigned int SM4_CK[32] = { 0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
      0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
      0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
      0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
      0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
      0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
      0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
      0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279 };
      
      
      unsigned int SM4_FK[4] = { 0xA3B1BAC6, 0x56AA3350, 0x677D9197, 0xB27022DC };
      
      unsigned char SM4_Sbox[256] =
      { 0xd6,0x90,0xe9,0xfe,0xcc,0xe1,0x3d,0xb7,0x16,0xb6,0x14,0xc2,0x28,0xfb,0x2c,0x05,
      0x2b,0x67,0x9a,0x76,0x2a,0xbe,0x04,0xc3,0xaa,0x44,0x13,0x26,0x49,0x86,0x06,0x99,
      0x9c,0x42,0x50,0xf4,0x91,0xef,0x98,0x7a,0x33,0x54,0x0b,0x43,0xed,0xcf,0xac,0x62,
      0xe4,0xb3,0x1c,0xa9,0xc9,0x08,0xe8,0x95,0x80,0xdf,0x94,0xfa,0x75,0x8f,0x3f,0xa6,
      0x47,0x07,0xa7,0xfc,0xf3,0x73,0x17,0xba,0x83,0x59,0x3c,0x19,0xe6,0x85,0x4f,0xa8,
      0x68,0x6b,0x81,0xb2,0x71,0x64,0xda,0x8b,0xf8,0xeb,0x0f,0x4b,0x70,0x56,0x9d,0x35,
      0x1e,0x24,0x0e,0x5e,0x63,0x58,0xd1,0xa2,0x25,0x22,0x7c,0x3b,0x01,0x21,0x78,0x87,
      0xd4,0x00,0x46,0x57,0x9f,0xd3,0x27,0x52,0x4c,0x36,0x02,0xe7,0xa0,0xc4,0xc8,0x9e,
      0xea,0xbf,0x8a,0xd2,0x40,0xc7,0x38,0xb5,0xa3,0xf7,0xf2,0xce,0xf9,0x61,0x15,0xa1,
      0xe0,0xae,0x5d,0xa4,0x9b,0x34,0x1a,0x55,0xad,0x93,0x32,0x30,0xf5,0x8c,0xb1,0xe3,
      0x1d,0xf6,0xe2,0x2e,0x82,0x66,0xca,0x60,0xc0,0x29,0x23,0xab,0x0d,0x53,0x4e,0x6f,
      0xd5,0xdb,0x37,0x45,0xde,0xfd,0x8e,0x2f,0x03,0xff,0x6a,0x72,0x6d,0x6c,0x5b,0x51,
      0x8d,0x1b,0xaf,0x92,0xbb,0xdd,0xbc,0x7f,0x11,0xd9,0x5c,0x41,0x1f,0x10,0x5a,0xd8,
      0x0a,0xc1,0x31,0x88,0xa5,0xcd,0x7b,0xbd,0x2d,0x74,0xd0,0x12,0xb8,0xe5,0xb4,0xb0,
      0x89,0x69,0x97,0x4a,0x0c,0x96,0x77,0x7e,0x65,0xb9,0xf1,0x09,0xc5,0x6e,0xc6,0x84,
      0x18,0xf0,0x7d,0xec,0x3a,0xdc,0x4d,0x20,0x79,0xee,0x5f,0x3e,0xd7,0xcb,0x39,0x48 };
      
      
      
      void SM4_KeySchedule(unsigned char MK[], unsigned int rk[])
      {
      	unsigned int tmp, buf, K[36];
      	int i;
      	for (i = 0; i < 4; i++)
      	{
      		K[i] = SM4_FK[i] ^ ((MK[4 * i] << 24) | (MK[4 * i + 1] << 16)
      			| (MK[4 * i + 2] << 8) | (MK[4 * i + 3]));
      	}
      	for (i = 0; i < 32; i++)
      	{
      		tmp = K[i + 1] ^ K[i + 2] ^ K[i + 3] ^ SM4_CK[i];
      		//nonlinear operation
      		buf = (SM4_Sbox[(tmp >> 24) & 0xFF]) << 24
      			| (SM4_Sbox[(tmp >> 16) & 0xFF]) << 16
      			| (SM4_Sbox[(tmp >> 8) & 0xFF]) << 8
      			| (SM4_Sbox[tmp & 0xFF]);
      		//linear operation
      		K[i + 4] = K[i] ^ ((buf) ^ (SM4_Rotl32((buf), 13)) ^ (SM4_Rotl32((buf), 23)));
      		rk[i] = K[i + 4];
      	}
      }
      
      
      void SM4_Encrypt(unsigned char MK[], unsigned char PlainText[], unsigned char CipherText[])
      {
      	unsigned int rk[32], X[36], tmp, buf;
      	int i, j;
      	SM4_KeySchedule(MK, rk);
      	for (j = 0; j < 4; j++)
      	{
      		X[j] = (PlainText[j * 4] << 24) | (PlainText[j * 4 + 1] << 16)
      			| (PlainText[j * 4 + 2] << 8) | (PlainText[j * 4 + 3]);
      	}
      	for (i = 0; i < 32; i++)
      	{
      		tmp = X[i + 1] ^ X[i + 2] ^ X[i + 3] ^ rk[i];
      		//nonlinear operation
      		buf = (SM4_Sbox[(tmp >> 24) & 0xFF]) << 24
      			| (SM4_Sbox[(tmp >> 16) & 0xFF]) << 16
      			| (SM4_Sbox[(tmp >> 8) & 0xFF]) << 8
      			| (SM4_Sbox[tmp & 0xFF]);
      		//linear operation
      		X[i + 4] = X[i] ^ (buf^SM4_Rotl32((buf), 2) ^ SM4_Rotl32((buf), 10)
      			^ SM4_Rotl32((buf), 18) ^ SM4_Rotl32((buf), 24));
      	}
      	for (j = 0; j < 4; j++)
      	{
      		CipherText[4 * j] = (X[35 - j] >> 24) & 0xFF;
      		CipherText[4 * j + 1] = (X[35 - j] >> 16) & 0xFF;
      		CipherText[4 * j + 2] = (X[35 - j] >> 8) & 0xFF;
      		CipherText[4 * j + 3] = (X[35 - j]) & 0xFF;
      	}
      }
      
      void SM4_Decrypt(unsigned char MK[], unsigned char CipherText[], unsigned char PlainText[])
      {
      	unsigned int rk[32], X[36], tmp, buf;
      	int i, j;
      	SM4_KeySchedule(MK, rk);
      	for (j = 0; j < 4; j++)
      	{
      		X[j] = (CipherText[j * 4] << 24) | (CipherText[j * 4 + 1] << 16) |
      			(CipherText[j * 4 + 2] << 8) | (CipherText[j * 4 + 3]);
      	}
      	for (i = 0; i < 32; i++)
      	{
      		tmp = X[i + 1] ^ X[i + 2] ^ X[i + 3] ^ rk[31 - i];
      		//nonlinear operation
      		buf = (SM4_Sbox[(tmp >> 24) & 0xFF]) << 24
      			| (SM4_Sbox[(tmp >> 16) & 0xFF]) << 16
      			| (SM4_Sbox[(tmp >> 8) & 0xFF]) << 8
      			| (SM4_Sbox[tmp & 0xFF]);
      		//linear operation
      		X[i + 4] = X[i] ^ (buf^SM4_Rotl32((buf), 2) ^ SM4_Rotl32((buf), 10)
      			^ SM4_Rotl32((buf), 18) ^ SM4_Rotl32((buf), 24));
      	}
      	for (j = 0; j < 4; j++)
      	{
      		PlainText[4 * j] = (X[35 - j] >> 24) & 0xFF;
      		PlainText[4 * j + 1] = (X[35 - j] >> 16) & 0xFF;
      		PlainText[4 * j + 2] = (X[35 - j] >> 8) & 0xFF;
      		PlainText[4 * j + 3] = (X[35 - j]) & 0xFF;
      	}
      }
      
      int SM4_SelfCheck()
      {
      	int i;
      	//Standard data
      	unsigned char key[16] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10 };
      	unsigned char plain[16] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10 };
      	unsigned char cipher[16] = { 0x68,0x1e,0xdf,0x34,0xd2,0x06,0x96,0x5e,0x86,0xb3,0xe9,0x4f,0x53,0x6e,0x42,0x46 };
      	unsigned char En_output[16];
      	unsigned char De_output[16];
      	SM4_Encrypt(key, plain, En_output);
      	SM4_Decrypt(key, cipher, De_output);
      
      	printf("明文 (十六進制): ");  
      	for(int i = 0; i < 16; i++) {  
      		printf("%02X ", plain[i]);  
      	}  
      	printf("\n");  
      
      	printf("密文 (十六進制): ");  
      	for(int i = 0; i < 16; i++) {  
      		printf("%02X ", En_output[i]);  
      	}  
      	printf("\n");  
      
      	printf("解密后的明文 (十六進制): ");  
      	for(int i = 0; i < 16; i++) {  
      		printf("%02X ", De_output[i]);  
      	}  
      	printf("\n");  
      	for (i = 0; i < 16; i++)
      	{
      		if ((En_output[i] != cipher[i]) | (De_output[i] != plain[i]))
      		{
      			printf("Self-check error");
      			return 1;
      		}
      	}
      
      	printf("sm4(16 Bytes ok!)\n\n");
      	return 0;
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ git add Makefile  sm4.c  sm4.h  sm4.o  test.c  test.o  testsm416
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ git commit -m "sm4 jiao cai dai ma yan zheng"
      [master 5fe03c1] sm4 jiao cai dai ma yan zheng
       1 file changed, 0 insertions(+), 0 deletions(-)
       create mode 100755 ch03/sm4/sm416/testsm416
      fengtairui@fengtairui-virtual-machine:~/bestidiocs2024/ch03/sm4/sm416$ git log
      commit 5fe03c1f740b2d7106034565fcd4ac58433387ed (HEAD -> master)
      Author: fengtairui <1978274655@qq.com>
      Date:   Sun Nov 3 10:22:21 2024 +0800
      
          sm4 jiao cai dai ma yan zheng
      

      命令行驗證

      fengtairui@fengtairui-virtual-machine:~$ echo -n -e "\x01\x23\x45\x67\x89\xAB\xCD\xEF\xFE\xDC\xBA\x98\x76\x54\x32\x10" > plain.bin
      fengtairui@fengtairui-virtual-machine:~$ cat plain.bin
      #Eg?1?7?1?7?1?7?1?7?1?7?1?4?1?7vT2
      fengtairui@fengtairui-virtual-machine:~$ gmssl rand -outlen 16 -out key.bin
      fengtairui@fengtairui-virtual-machine:~$ od -tx1 key.bin
      0000000 0a 16 d6 8b c4 9c 8b 0e e8 b5 97 40 15 34 20 95
      0000020
      fengtairui@fengtairui-virtual-machine:~$ echo -n -e "\x01\x23\x45\x67\x89\xAB\xCD\xEF\xFE\xDC\xBA\x98\x76\x54\x32\x10" | gmssl sm4_ecb -encrypt -key $(xxd -p key.bin) -out encrypted_data.ecb
      fengtairui@fengtairui-virtual-machine:~$ cat encrypted_data.ecb
      ?1?7?1?7Y?1?7?1?7VN
             ?1?7&?1?7l
      fengtairui@fengtairui-virtual-machine:~$ gmssl sm4_ecb -decrypt -in encrypted_data.ecb -out decrypted_data.bin -key $(xxd -p key.bin) 
      fengtairui@fengtairui-virtual-machine:~$ cat plain.bin
      #Eg?1?7?1?7?1?7?1?7?1?7?1?4?1?7vT2
      fengtairui@fengtairui-virtual-machine:~$ cat decrypted_data.bin
      #Eg?1?7?1?7?1?7?1?7?1?7?1?4?1?7vT2
      

      2.在密標委網站http://www.gmbz.org.cn/main/bzlb.html查找SM2,SM3,SM4相關標準,分析代碼實現與標準的對應關系。(10分)

      SM2

      加密解密

      SM2是中國國家密碼管理局發布的一種公鑰密碼標準,基于橢圓曲線密碼體系(ECC)。它主要用于加密、解密、數字簽名和驗證等功能。SM2算法的核心是橢圓曲線上的點運算,包括點的加法和標量乘法。以下是SM2加密解密代碼實現與SM2標準之間的對應關系:

      1. 密鑰生成(SM2_KeyGeneration)

        • 標準中描述了如何從私鑰生成公鑰。
        • 代碼中的SM2_KeyGeneration函數實現了這一過程,它接受私鑰作為輸入,并計算對應的公鑰。
      2. 加密(SM2_Encrypt)

        • 標準中描述了SM2加密算法,包括隨機數的生成、點的標量乘法、密鑰派生函數(KDF)等。
        • 代碼中的SM2_Encrypt函數實現了這一過程,它接受隨機數、公鑰和明文作為輸入,并生成密文。
      3. 解密(SM2_Decrypt)

        • 標準中描述了SM2解密算法,包括點的標量乘法、密鑰派生函數(KDF)等。
        • 代碼中的SM2_Decrypt函數實現了這一過程,它接受私鑰和密文作為輸入,并恢復出明文。
      4. 密鑰派生函數(SM3_KDF)

        • 標準中描述了如何使用SM3哈希函數來生成密鑰。
        • 代碼中的SM3_KDF函數實現了這一過程,它接受輸入數據和密鑰長度作為輸入,并生成密鑰。
      5. 橢圓曲線點的驗證(Test_Point 和 Test_PubKey)

        • 標準中描述了如何驗證橢圓曲線上的點是否有效。
        • 代碼中的Test_PointTest_PubKey函數實現了這一過程,它們檢查給定的點是否在橢圓曲線上。
      6. 自測試(SM2_ENC_SelfTest)

        • 標準中包含了自測試的步驟,以確保算法實現的正確性。
        • 代碼中的SM2_ENC_SelfTest函數實現了這一過程,它通過加密和解密測試數據來驗證算法的正確性。
      7. 初始化SM2曲線參數(SM2_Init)

        • 標準中描述了如何初始化SM2算法所需的橢圓曲線參數。
        • 代碼中的SM2_Init函數實現了這一過程,它設置了橢圓曲線的參數。

      這些函數和過程是SM2算法的核心組成部分,它們在代碼中的實現與SM2標準的描述相對應。

      簽名驗簽

      SM2是中國國家密碼管理局發布的公鑰密碼標準,主要用于橢圓曲線加密和簽名。SM2算法包括密鑰生成、加密、解密、簽名和驗證等操作。概述SM2簽名驗簽代碼實現與SM2標準之間的對應關系:

      1. SM2初始化(SM2_Init)

        • 標準中提到初始化SM2算法時需要設置曲線參數,包括p、a、b、Gx、Gy、n等。
        • 代碼中的SM2_Init函數正是執行這一步驟,它使用MIRACL庫來初始化這些參數,并檢查點G的階是否為n。
      2. 密鑰生成(SM2_KeyGeneration)

        • 標準中描述了如何從私鑰d計算公鑰(d*G),其中G是曲線上的基點。
        • 代碼中的SM2_KeyGeneration函數實現了這一過程,它接受私鑰作為輸入,并計算對應的公鑰。
      3. 簽名生成(SM2_Sign)

        • 標準中詳細描述了SM2簽名算法,包括消息摘要的計算、隨機數k的選擇、簽名值R和S的計算等。
        • 代碼中的SM2_Sign函數實現了這一過程,它接受消息、隨機數、私鑰等作為輸入,并生成簽名值R和S。
      4. 簽名驗證(SM2_Verify)

        • 標準中描述了如何驗證簽名,包括計算R和S的有效性,以及使用公鑰驗證簽名。
        • 代碼中的SM2_Verify函數實現了這一過程,它接受消息、公鑰、簽名值R和S作為輸入,并驗證簽名的有效性。
      5. 自檢測試(SM2_SelfCheck)

        • 標準中提到了算法的自檢測試,以確保算法實現的正確性。
        • 代碼中的SM2_SelfCheck函數實現了這一過程,它通過執行密鑰生成、簽名和驗證來測試算法的完整性。
      6. 輔助函數

        • 代碼中還包含了一些輔助函數,如Test_PointTest_PubKeyTest_ZeroTest_nTest_Range等,這些函數用于在簽名和驗證過程中檢查各種條件是否滿足。

      這些函數和過程是SM2算法的核心組成部分,它們在代碼中的實現與SM2標準的描述相對應。

      SM3

      SM3是中國國家密碼管理局發布的密碼散列函數標準,類似于國際上的SHA-256算法。SM3算法的主要步驟包括消息填充、消息擴展、壓縮函數和循環處理消息塊。以下是附件中的代碼實現與SM3標準之間的對應關系:

      1. 初始化向量(IV)

        • 標準中定義了SM3算法的初始向量。
        • 附件中的代碼定義了IV數組,與標準中的初始向量相對應。
      2. 循環左移(ROTL)

        • 標準中描述了循環左移操作。
        • 附件中的代碼實現了ROTL函數,用于執行循環左移操作。
      3. 常量函數Tj

        • 標準中定義了SM3算法中的常量函數Tj。
        • 附件中的代碼實現了Tj函數,根據標準生成相應的常量。
      4. 布爾函數FFj和GGj

        • 標準中定義了SM3算法中的布爾函數FF和GG。
        • 附件中的代碼實現了FFjGGj函數,用于執行布爾函數操作。
      5. 非線性變換函數P0和P1

        • 標準中定義了SM3算法中的非線性變換函數P0和P1。
        • 附件中的代碼實現了P0P1函數,用于執行非線性變換。
      6. 擴展函數EB

        • 標準中描述了消息擴展的過程。
        • 附件中的代碼實現了EB函數,用于將輸入消息擴展為W和W1數組。
      7. 壓縮函數CF

        • 標準中描述了壓縮函數的執行過程。
        • 附件中的代碼實現了CF函數,用于執行壓縮函數,更新哈希狀態。
      8. 哈希計算函數SM3Hash

        • 標準中描述了整個哈希計算的流程。
        • 附件中的代碼實現了SM3Hash函數,用于執行整個哈希計算過程,包括消息填充、消息擴展、壓縮函數和循環處理消息塊。
      9. 消息填充

        • 標準中描述了消息填充的方法。
        • 附件中的代碼在SM3Hash函數中實現了消息填充,確保消息長度符合要求。
      10. 消息長度處理

        • 標準中描述了如何處理消息長度。
        • 附件中的代碼在SM3Hash函數中添加了消息長度的處理。

      這些函數和過程是SM3算法的核心組成部分,它們在代碼中的實現與SM3標準的描述相對應。

      SM4

      SM4是中國國家密碼管理局發布的對稱加密標準,類似于國際上的AES算法。SM4算法的主要步驟包括密鑰擴展、加密和解密過程。以下是附件中的代碼實現與SM4標準之間的對應關系:

      1. 密鑰擴展(SM4_KeySchedule)

        • 標準中描述了如何從原始密鑰生成加密所需的輪密鑰。
        • 附件中的代碼實現了SM4_KeySchedule函數,用于生成輪密鑰。
      2. 加密過程(SM4_Encrypt)

        • 標準中描述了加密過程,包括密鑰白化、輪函數應用等。
        • 附件中的代碼實現了SM4_Encrypt函數,用于執行加密過程。
      3. 解密過程(SM4_Decrypt)

        • 標準中描述了解密過程,包括逆密鑰白化、逆輪函數應用等。
        • 附件中的代碼實現了SM4_Decrypt函數,用于執行解密過程。
      4. S盒(SM4_Sbox)

        • 標準中定義了SM4算法使用的S盒。
        • 附件中的代碼定義了SM4_Sbox數組,與標準中的S盒相對應。
      5. 輪常量(SM4_CK)

        • 標準中定義了SM4算法使用的輪常量。
        • 附件中的代碼定義了SM4_CK數組,與標準中的輪常量相對應。
      6. 密鑰白化(SM4_FK)

        • 標準中描述了如何對密鑰進行白化處理。
        • 附件中的代碼定義了SM4_FK數組,用于密鑰白化。
      7. 循環左移(SM4_Rotl32)

        • 標準中描述了循環左移操作。
        • 附件中的代碼實現了SM4_Rotl32宏,用于執行循環左移操作。
      8. 自測試(SM4_SelfCheck)

        • 標準中包含了自測試的步驟,以確保算法實現的正確性。
        • 附件中的代碼實現了SM4_SelfCheck函數,通過加密和解密測試數據來驗證算法的正確性。

      這些函數和過程是SM4算法的核心組成部分,它們在代碼中的實現與SM4標準的描述相對應。

      posted @ 2025-01-16 20:46  20221320馮泰瑞  閱讀(58)  評論(0)    收藏  舉報
      主站蜘蛛池模板: 熟妇人妻久久春色视频网| 99视频30精品视频在线观看| 疯狂做受xxxx高潮欧美日本| 18禁无遮挡啪啪无码网站破解版| 激情内射亚洲一区二区三区| 色一情一乱一伦麻豆| 国产视频不卡一区二区三区| gogogo高清在线观看视频中文| 国产亚洲中文字幕久久网| 亚洲国产精品久久久久婷婷图片| 亚洲av影院一区二区三区| 国产av日韩精品一区二区| 国产99视频精品免费视频6| 国精品无码一区二区三区在线看| 亚洲精品成人无限看| 亚洲国产成人久久精品app| 中文字幕永久精品国产| 国内精品极品久久免费看| 最新午夜男女福利片视频| AV教师一区高清| 亚洲欧洲一区二区精品| 午夜性刺激在线观看| 日日碰狠狠添天天爽五月婷| 一本色道久久东京热| 香蕉影院在线观看| 91色老久久精品偷偷蜜臀| 国产情侣激情在线对白| 托里县| 日韩精品18禁一区二区| 亚洲国产天堂久久综合226114| 欧美日韩国产码高清| 亚洲成av人片天堂网| 亚洲乱色熟女一区二区蜜臀| 99RE6在线观看国产精品| 国产成人av免费观看| 亚洲色婷婷综合开心网| 99热精品国产三级在线观看| 女同亚洲精品一区二区三| 日韩一区二区三区精品区| 精品国产免费人成网站| 欧美亚洲日本国产其他|