<output id="qn6qe"></output>

    1. <output id="qn6qe"><tt id="qn6qe"></tt></output>
    2. <strike id="qn6qe"></strike>

      亚洲 日本 欧洲 欧美 视频,日韩中文字幕有码av,一本一道av中文字幕无码,国产线播放免费人成视频播放,人妻少妇偷人无码视频,日夜啪啪一区二区三区,国产尤物精品自在拍视频首页,久热这里只有精品12

      由《羅素的故事》所想到的

      一口氣看了圖靈出版社的《羅素的故事》,對(duì)于里面的提到的一些問題還是比較有興趣的,聊聊自己所想到的吧

      比如邏輯的本質(zhì)和定義是什么 邏輯的定義:一切新的,決定性的推理,這個(gè)有點(diǎn)像演算系統(tǒng)。本質(zhì)是什么,里面貌似沒有說,我個(gè)人理解邏輯的本質(zhì)就是根據(jù)現(xiàn)有規(guī)則,進(jìn)行演算的過程。

       

      羅素悖論

      羅素最重要的發(fā)現(xiàn),就是我們聽到的的:羅素悖論

      什么羅素悖論:我記得少年包青天里面有一個(gè)故事,大概是一個(gè)王爺想懲罰包拯,給包拯出了一個(gè)題目,說如果包拯猜對(duì)了他在想什么,就可以放了他,如果猜錯(cuò)了,就要懲罰他。包拯就說:王爺想懲罰我。最后王爺沒有懲罰包拯,因?yàn)槿绻聦?duì)了,王爺必須放了他,如果猜錯(cuò)了,說明王爺沒有想懲罰包拯。

       

      導(dǎo)致羅素悖論的最大問題就是自指性,個(gè)人感覺定義一個(gè)概念的時(shí)候,用到了這個(gè)概念本身。比如我們?nèi)绾味x無窮大數(shù)字,可以這么定義:比無窮大還大的數(shù)字,但是這個(gè)是不合理的,什么是無窮大還是沒有正確的說明。

      關(guān)于羅素悖論,是從集合論推導(dǎo)出來的,集合的定義是這樣的:所有具有共通屬性的事物的集合

      那么集合有兩種性質(zhì):所有的集合的集合本身也是一個(gè)集合,所有數(shù)字的集合不是一個(gè)數(shù),在第一種情況下,就包含了自指,就會(huì)產(chǎn)生悖論

      那我們提出一個(gè)問題:所有不包括自身集合所組成的集合是否包含自身?

      可以看出,這個(gè)是沒有答案的,也就是不可證的。如果這個(gè)集合包含自身,那么他就不屬于這樣的集合,如果這個(gè)集合不包含自身,那么他應(yīng)該在這個(gè)集合里面

      可以用一個(gè)形象的例子來說明:假設(shè)有這樣一種性質(zhì)的網(wǎng)頁,這種網(wǎng)頁里面的每一個(gè)鏈接所在的域名,都不包含自身所在的域名,比如有一個(gè)網(wǎng)頁  http://www.test.com/index.html 這個(gè)index.html里面定義的所有超鏈接都不包含test.com 域名。 那我想做一個(gè)這種性質(zhì)的網(wǎng)頁,這個(gè)網(wǎng)頁要包含所有這種不包含自身超鏈接的所有網(wǎng)頁,悖論來了,我做的這個(gè)網(wǎng)頁到底應(yīng)不應(yīng)該包含自己的域名?

      如果不包含自身,那么就不滿足我自己的定義,因?yàn)槲乙页鏊羞@種性質(zhì)的網(wǎng)頁,我自己本身就具有這種性質(zhì),如果包含自身,也不滿足我的定義,因?yàn)槲叶x了我要做一個(gè)不包含自身的網(wǎng)頁。

       

      為什么悖論重要

      這個(gè)悖論為什么這么重要,其實(shí)說明了一個(gè)重要的問題,基于命題規(guī)則的演算系統(tǒng),本身是不完備的。也就是在這個(gè)系統(tǒng)里面,存在一個(gè)命題,我們無法證明。

      我們初中基礎(chǔ)的歐式幾何就存在這樣的問題,我們來看看歐式幾何的幾個(gè)公里

      歐式幾何的五條公設(shè)是:

        1、任意兩個(gè)點(diǎn)可以通過一條直線連接。

        2、任意線段能無限延伸成一條直線。 

        3、給定任意線段,可以以其一個(gè)端點(diǎn)作為圓心,該線段作為半徑作一個(gè)圓。

        4、所有直角都全等。

        5、若兩條直線都與第三條直線相交,并且在同一邊的內(nèi)角之和小于兩個(gè)直角和,則這兩條直線在這一邊必定相交。

      很多數(shù)學(xué)家都對(duì)第五條公里產(chǎn)生質(zhì)疑,因?yàn)檫@個(gè)太復(fù)雜了,和前面四條基本公里沒有任何聯(lián)系,無法通過前面四個(gè)規(guī)則推導(dǎo)出來,也就是說,在歐式幾何這一套體系里面,肯定存在一個(gè)命題,我們是沒有辦法證明的,也就是他是不完備的。很多數(shù)學(xué)家根據(jù)基本規(guī)則,推導(dǎo)出所有確定性的結(jié)論,這個(gè)是不可能的。

      而其他數(shù)學(xué)家,如黎曼,則通過定義了球面集合的幾個(gè)基本公理,也推導(dǎo)出來自包含的非歐式幾何。我們小時(shí)候并不了解這個(gè)演算和推理過程背后的實(shí)質(zhì)以及存在的問題,直到19世紀(jì)與20世紀(jì)一批牛逼的邏輯數(shù)學(xué)家解決了這個(gè)問題。

      我們可以把這個(gè)公理當(dāng)做基本規(guī)則,根據(jù)這個(gè)規(guī)則推導(dǎo)出來的所有命題的過程叫做演算,這樣就形成了一個(gè)完整的體系。如果這個(gè)基本規(guī)則是相同的,那么無論通過何種演算過程推導(dǎo)出來的體系,肯定也是一致性的相容的,也就是說過在A體系里面推導(dǎo)出S命題是正確的,那么在B體系里面,根據(jù)相同規(guī)則推導(dǎo)出來的S'命題也是正確的。

       

      和編程的關(guān)系

      說了這么多,貌似和編程一點(diǎn)關(guān)系都沒有,但是最近看到 函數(shù)式編程,我突然有點(diǎn)受到啟發(fā),怎么說了,函數(shù)式編程和這個(gè)演算過程很類似,

      函數(shù)時(shí)編程 所定義的 lamda表達(dá)式就是一個(gè)演算系統(tǒng),和歐式幾何一樣,先定義一套基本的規(guī)則,也就是lamda表達(dá)式,這個(gè)基本規(guī)則,對(duì)任何函數(shù)式編程都是一樣的。后續(xù)的所有計(jì)算結(jié)果都是基于我們所定義的基本規(guī)則進(jìn)行演算的過程。這一套規(guī)則不僅僅可以用來做我們熟悉的編程,還是做任何其他的事情,比如人工智能領(lǐng)域,因?yàn)橐?guī)則和演算過程對(duì)于函數(shù)式編程語言來說,都是可以自我定義的。但是上面我們介紹了,這一套體系里面肯定會(huì)存在有一些命題是無法判定的,那么在函數(shù)式編程里面,就存在停機(jī)判定問題。

       

      停機(jī)問題(halting problem)判斷任意一個(gè)程序是否會(huì)在有限的時(shí)間之內(nèi)結(jié)束運(yùn)行的問題。如果這個(gè)問題可以在有限的時(shí)間之內(nèi)解決,那么就可以有一個(gè)程序判斷其本身是否會(huì)停機(jī)。但是,在程序停止之前,沒有辦法判斷它會(huì)不會(huì)停止。所以這是一個(gè)不可解的問題。

      下面來看看問題的證明

      假設(shè)存在這種算法,我們用下列偽代碼描述:
      function halting(func, input) {
      return if_func_will_halt_on_input;
      }


      我們構(gòu)造另一函數(shù):
      function is_halt(func) {
      if (halting(func, func)) {
      for(;;) //死循環(huán) }
      }


      接下來,調(diào)用:
      is_halt(is_halt)


      函數(shù)is_halt以is_halt為輸入時(shí),到底停機(jī)還是不停機(jī)? 其實(shí)就是羅素悖論,由于自指性,所以存在悖論。

       

      在根據(jù)一致性結(jié)論,所有編程語言C,java,匯編,.net,lisp,由于都是在同一套規(guī)則上推導(dǎo)出來的,所以在邏輯上是等價(jià),也就是說 能夠用C語言實(shí)現(xiàn)的功能,都是可以用其他的語言來實(shí)現(xiàn)。

       

      扯了這么多,這個(gè)也是自己的理解,有一些地方不一定正確,大家就當(dāng)看看了解而已,之所以想寫這個(gè),只是發(fā)現(xiàn)編程的本質(zhì)真的是數(shù)學(xué),程序員應(yīng)該多了解一些數(shù)學(xué)知識(shí),數(shù)學(xué)能夠幫你看到一些本質(zhì)的問題

       

       

       

       

       

       

      主站蜘蛛池模板: 国语自产精品视频在线看| 国产成人精品电影在线观看| 免费无码高H视频在线观看| 国产精品成人中文字幕| 一道本AV免费不卡播放| 亚洲色成人一区二区三区| 黄色三级亚洲男人的天堂| 亚洲国产欧美一区二区好看电影| 国产亚洲亚洲国产一二区| 精品国产熟女一区二区三区 | 少妇被粗大的猛烈进出动视频 | 国产精品美女一区二区三| 丁香婷婷在线视频| 长腿校花无力呻吟娇喘的视频| 黑人av无码一区| 五月天中文字幕mv在线| 日日噜噜夜夜狠狠久久蜜桃| 成人午夜无人区一区二区| 久久精品一本到99热免费| 亚洲成av人片不卡无码手机版| 国产精品先锋资源在线看| 午夜久久水蜜桃一区二区| 99er热精品视频| 99人中文字幕亚洲区三| 亚洲最大成人在线播放| 亚洲熟妇av一区二区三区宅男| 欧美日韩精品一区二区在线观看 | 中文字幕无码免费久久 | 蜜臀人妻精品一区二区免费 | 视频一区二区三区四区五区| 国产偷窥熟女高潮精品视频| 日韩国产成人精品视频| 漂亮的保姆hd完整版免费韩国 | 中文字幕日韩区二区三区| 国产精品亚洲二区在线播放| 白嫩人妻精品一二三四区| 人人妻人人澡人人爽人人精品电影 | 香港日本三级亚洲三级| 国产色视频一区二区三区qq号| 国产国语毛片在线看国产| 亚洲精品日本一区二区|