大模型基礎補全計劃(四)---LSTM的實例與測試(RNN的改進)
PS:要轉載請注明出處,本人版權所有。
PS: 這個只是基于《我自己》的理解,
如果和你的原則及想法相沖突,請諒解,勿噴。
環境說明
??無
前言
???本文是這個系列第四篇,它們是:
- 《大模型基礎補全計劃(一)---重溫一些深度學習相關的數學知識》 http://www.rzrgm.cn/Iflyinsky/p/18717317
- 《大模型基礎補全計劃(二)---詞嵌入(word embedding) 》 http://www.rzrgm.cn/Iflyinsky/p/18775451
- 《大模型基礎補全計劃(三)---RNN實例與測試》 http://www.rzrgm.cn/Iflyinsky/p/18967569
???上文我們提到了RNN這種處理序列信息的網絡結構,今天我們將會提到RNN的改進版本之一的網絡結構:LSTM。注意在transformer結構出來之前,RNN還有很多的改進結構,畢竟這是一個大的研究方向。
LSTM (long short-term memory) 簡介
??
LSTM的意義
??我們首先來想一想RNN的結構,很樸素的理解:RNN有兩個輸入,一個是當前輸入,一個是上一次隱藏參數輸入。如果我們從時間線來看,對于早期的輸入\(X_{t-n}\)來說,由于隱藏參數一層層迭代和傳遞,對于\(X_t\)的影響非常的弱。此外,相對的,對于\(X_{t-1}\)來說,其對\(X_t\)的影響非常的強,如果\(X_{t-1}\)信息不完整,可能會影響輸出。
??為了解決上面RNN結構遇到的問題,提出了LSTM結構。
LSTM的結構介紹
??首先我們來看看其結構圖如下:

注:此圖來自于 https://zh.d2l.ai/chapter_recurrent-modern/lstm.html ,若侵權,聯系刪之。
??其有如下的一些內容:
-
有三個輸入:輸入\(X_t\),隱藏參數\(H_{t-1}\),記憶\(C_{t-1}\)。
-
有三個門:輸入門 \(I_t = \sigma(X_tW_{xi} + H_{t-1}W_{hi} + b_i)\) , 遺忘門 \(F_t = \sigma(X_tW_{xf} + H_{t-1}W_{hf} + b_f)\),輸出門 \(O_t = \sigma(X_tW_{xo} + H_{t-1}W_{ho} + b_o)\)
-
有一個候選記憶元 \(\widetilde{C_t} = tanh(X_tW_{xc} + H_{t-1}W_{hc} + b_c)\)。
-
有一個記憶元\(C_t\),其含義很簡單,有多少記憶來自于\(\widetilde{C_t}\) ,然后由輸入門 \(I_t\)控制多少候選記憶元進入新記憶中,由 遺忘門 遺忘門 \(F_t\) 來控制多少以前的記憶\(C_{t-1}\)進入新的記憶中。其公式為:\(C_t = F_t \odot C_{t-1} + I_t \odot \widetilde{C_t}\)
-
有三個輸出:輸出門 \(O_t\),記憶元 \(C_t\),隱藏態\(H_t = O_t \odot tanh(C_t)\)
??總的來說,就是給隱藏參數加入了記憶參數,并可以通過記憶影響隱藏參數。
基于LSTM訓練一個簡單的文字序列輸出模型
??對于文本預處理、數據集構造、訓練框架搭建詳見前文《大模型基礎補全計劃(三)---RNN實例與測試》
??下面是構建LSTM的網絡結構,首先我們手動來構建網絡:
def get_lstm_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device)*0.01
def three():
return (normal((num_inputs, num_hiddens)),
normal((num_hiddens, num_hiddens)),
torch.zeros(num_hiddens, device=device))
W_xi, W_hi, b_i = three() # 輸入門參數
W_xf, W_hf, b_f = three() # 遺忘門參數
W_xo, W_ho, b_o = three() # 輸出門參數
W_xc, W_hc, b_c = three() # 候選記憶元參數
# 輸出層參數
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
# 附加梯度
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,
b_c, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
def init_lstm_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device),
torch.zeros((batch_size, num_hiddens), device=device))
def lstm(inputs, state, params):
[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
W_hq, b_q] = params
(H, C) = state
outputs = []
for X in inputs:
I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
C = F * C + I * C_tilda
H = O * torch.tanh(C)
Y = (H @ W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H, C)
??然后是通過torch框架來設計網絡:
lstm_layer = nn.LSTM(num_inputs, num_hiddens)
??最后是完整的訓練代碼:
import os
import random
import torch
import math
from torch import nn
from torch.nn import functional as F
import numpy as np
import time
import visdom
import sys
sys.path.append('.')
import dateset
class Accumulator:
"""在n個變量上累加"""
def __init__(self, n):
"""Defined in :numref:`sec_softmax_scratch`"""
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class Timer:
"""記錄多次運行時間"""
def __init__(self):
"""Defined in :numref:`subsec_linear_model`"""
self.times = []
self.start()
def start(self):
"""啟動計時器"""
self.tik = time.time()
def stop(self):
"""停止計時器并將時間記錄在列表中"""
self.times.append(time.time() - self.tik)
return self.times[-1]
def avg(self):
"""返回平均時間"""
return sum(self.times) / len(self.times)
def sum(self):
"""返回時間總和"""
return sum(self.times)
def cumsum(self):
"""返回累計時間"""
return np.array(self.times).cumsum().tolist()
# 以num_steps為步長,從隨機的起始位置開始,返回
# x1=[ [random_offset1:random_offset1 + num_steps], ... , [random_offset_batchsize:random_offset_batchsize + num_steps] ]
# y1=[ [random_offset1 + 1:random_offset1 + num_steps + 1], ... , [random_offset_batchsize + 1:random_offset_batchsize + num_steps + 1] ]
def seq_data_iter_random(corpus, batch_size, num_steps): #@save
"""使用隨機抽樣生成一個小批量子序列"""
# 從隨機偏移量開始對序列進行分區,隨機范圍包括num_steps-1
corpus = corpus[random.randint(0, num_steps - 1):]
# 減去1,是因為我們需要考慮標簽
num_subseqs = (len(corpus) - 1) // num_steps
# 長度為num_steps的子序列的起始索引
# [0, num_steps*1, num_steps*2, num_steps*3, ...]
initial_indices = list(range(0, num_subseqs * num_steps, num_steps))
# 在隨機抽樣的迭代過程中,
# 來自兩個相鄰的、隨機的、小批量中的子序列不一定在原始序列上相鄰
random.shuffle(initial_indices)
def data(pos):
# 返回從pos位置開始的長度為num_steps的序列
return corpus[pos: pos + num_steps]
num_batches = num_subseqs // batch_size
for i in range(0, batch_size * num_batches, batch_size):
# 在這里,initial_indices包含子序列的隨機起始索引
initial_indices_per_batch = initial_indices[i: i + batch_size]
X = [data(j) for j in initial_indices_per_batch]
Y = [data(j + 1) for j in initial_indices_per_batch]
yield torch.tensor(X), torch.tensor(Y)
# 以num_steps為步長,從隨機的起始位置開始,返回
# x1=[:, random_offset1:random_offset1 + num_steps]
# y1=[:, random_offset1 + 1:random_offset1 + num_steps + 1]
def seq_data_iter_sequential(corpus, batch_size, num_steps): #@save
"""使用順序分區生成一個小批量子序列"""
# 從隨機偏移量開始劃分序列
offset = random.randint(0, num_steps)
num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
# 重新根據corpus建立X_corpus, Y_corpus,兩者之間差一位。注意X_corpus, Y_corpus的長度是batch_size的整數倍
Xs = torch.tensor(corpus[offset: offset + num_tokens])
Ys = torch.tensor(corpus[offset + 1: offset + 1 + num_tokens])
# 直接根據batchsize劃分X_corpus, Y_corpus
Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
# 計算出需要多少次才能取完數據
num_batches = Xs.shape[1] // num_steps
for i in range(0, num_steps * num_batches, num_steps):
X = Xs[:, i: i + num_steps]
Y = Ys[:, i: i + num_steps]
yield X, Y
class SeqDataLoader: #@save
"""加載序列數據的迭代器"""
def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):
if use_random_iter:
self.data_iter_fn = seq_data_iter_random
else:
self.data_iter_fn = seq_data_iter_sequential
self.corpus, self.vocab = dateset.load_dataset(max_tokens)
self.batch_size, self.num_steps = batch_size, num_steps
def __iter__(self):
return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)
def load_data_epoch(batch_size, num_steps, #@save
use_random_iter=False, max_tokens=10000):
"""返回時光機器數據集的迭代器和詞表"""
data_iter = SeqDataLoader(
batch_size, num_steps, use_random_iter, max_tokens)
return data_iter, data_iter.vocab
def get_lstm_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device)*0.01
def three():
return (normal((num_inputs, num_hiddens)),
normal((num_hiddens, num_hiddens)),
torch.zeros(num_hiddens, device=device))
W_xi, W_hi, b_i = three() # 輸入門參數
W_xf, W_hf, b_f = three() # 遺忘門參數
W_xo, W_ho, b_o = three() # 輸出門參數
W_xc, W_hc, b_c = three() # 候選記憶元參數
# 輸出層參數
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
# 附加梯度
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,
b_c, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
def init_lstm_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device),
torch.zeros((batch_size, num_hiddens), device=device))
def lstm(inputs, state, params):
[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
W_hq, b_q] = params
(H, C) = state
outputs = []
for X in inputs:
I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
C = F * C + I * C_tilda
H = O * torch.tanh(C)
Y = (H @ W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H, C)
def try_gpu(i=0):
"""如果存在,則返回gpu(i),否則返回cpu()
Defined in :numref:`sec_use_gpu`"""
if torch.cuda.device_count() >= i + 1:
return torch.device(f'cuda:{i}')
return torch.device('cpu')
#@save
class RNNModel(nn.Module):
"""循環神經網絡模型"""
def __init__(self, rnn_layer, vocab_size, device, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.num_hiddens = self.rnn.hidden_size
# 如果RNN是雙向的(之后將介紹),num_directions應該是2,否則應該是1
if not self.rnn.bidirectional:
self.num_directions = 1
self.linear = nn.Linear(self.num_hiddens, self.vocab_size, device=device)
else:
self.num_directions = 2
self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size, device=device)
def forward(self, inputs, state):
X = F.one_hot(inputs.T.long(), self.vocab_size)
X = X.to(torch.float32)
Y, state = self.rnn(X, state)
# 全連接層首先將Y的形狀改為(時間步數*批量大小,隱藏單元數)
# 它的輸出形狀是(時間步數*批量大小,詞表大小)。
output = self.linear(Y.reshape((-1, Y.shape[-1])))
return output, state
def begin_state(self, device, batch_size=1):
if not isinstance(self.rnn, nn.LSTM):
# nn.GRU以張量作為隱狀態
return torch.zeros((self.num_directions * self.rnn.num_layers,
batch_size, self.num_hiddens),
device=device)
else:
# nn.LSTM以元組作為隱狀態
return (torch.zeros((
self.num_directions * self.rnn.num_layers,
batch_size, self.num_hiddens), device=device),
torch.zeros((
self.num_directions * self.rnn.num_layers,
batch_size, self.num_hiddens), device=device))
class RNNModelScratch: #@save
"""從零開始實現的循環神經網絡模型"""
def __init__(self, vocab_size, num_hiddens, device,
get_params, init_state, forward_fn):
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
# 初始化了隱藏參數 W_xh, W_hh, b_h, W_hq, b_q
self.params = get_params(vocab_size, num_hiddens, device)
self.init_state, self.forward_fn = init_state, forward_fn
def __call__(self, X, state):
# X的形狀:(batch_size, num_steps)
# X one_hot之后的形狀:(num_steps,batch_size,詞表大小)
X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
return self.forward_fn(X, state, self.params)
def begin_state(self, batch_size, device):
return self.init_state(batch_size, self.num_hiddens, device)
def predict_ch8(prefix, num_preds, net, vocab, device): #@save
"""在prefix后面生成新字符"""
state = net.begin_state(batch_size=1, device=device)
outputs = [vocab[prefix[0]]]
get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
for y in prefix[1:]: # 預熱期
_, state = net(get_input(), state)
outputs.append(vocab[y])
for _ in range(num_preds): # 預測num_preds步
# y 包含從開始到現在的所有輸出
# state是當前計算出來的隱藏參數
y, state = net(get_input(), state)
outputs.append(int(y.argmax(dim=1).reshape(1)))
return ''.join([vocab.idx_to_token[i] for i in outputs])
def grad_clipping(net, theta): #@save
"""裁剪梯度"""
if isinstance(net, nn.Module):
params = [p for p in net.parameters() if p.requires_grad]
else:
params = net.params
norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
if norm > theta:
for param in params:
param.grad[:] *= theta / norm
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
"""訓練網絡一個迭代周期(定義見第8章)"""
state, timer = None, Timer()
metric = Accumulator(2) # 訓練損失之和,詞元數量
# X的形狀:(batch_size, num_steps)
# Y的形狀:(batch_size, num_steps)
for X, Y in train_iter:
if state is None or use_random_iter:
# 在第一次迭代或使用隨機抽樣時初始化state
state = net.begin_state(batch_size=X.shape[0], device=device)
else:
if isinstance(net, nn.Module) and not isinstance(state, tuple):
# state對于nn.GRU是個張量
state.detach_()
else:
# state對于nn.LSTM或對于我們從零開始實現的模型是個張量
for s in state:
s.detach_()
y = Y.T.reshape(-1)
X, y = X.to(device), y.to(device)
# y_hat 包含從開始到現在的所有輸出
# y_hat的形狀:(batch_size * num_steps, 詞表大小)
# state是當前計算出來的隱藏參數
y_hat, state = net(X, state)
# 交叉熵損失函數,傳入預測值和標簽值,并求平均值
l = loss(y_hat, y.long()).mean()
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.backward()
grad_clipping(net, 1)
updater.step()
else:
l.backward()
grad_clipping(net, 1)
# 因為已經調用了mean函數
updater(batch_size=1)
# 這里記錄交叉熵損失的值的和,以及記錄對應交叉熵損失值的樣本個數
metric.add(l * y.numel(), y.numel())
# 求交叉熵損失的平均值,再求exp,即可得到困惑度
return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
def sgd(params, lr, batch_size):
"""小批量隨機梯度下降
Defined in :numref:`sec_linear_scratch`"""
with torch.no_grad():
for param in params:
param -= lr * param.grad / batch_size
param.grad.zero_()
#@save
def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
use_random_iter=False):
"""訓練模型(定義見第8章)"""
loss = nn.CrossEntropyLoss()
# 新建一個連接客戶端
# 指定 env=u'test1',默認端口為 8097,host 是 'localhost'
vis = visdom.Visdom(env=u'test1', server="http://10.88.88.136", port=8097)
animator = vis
# 初始化
if isinstance(net, nn.Module):
updater = torch.optim.SGD(net.parameters(), lr)
else:
updater = lambda batch_size: sgd(net.params, lr, batch_size)
predict = lambda prefix: predict_ch8(prefix, 30, net, vocab, device)
# 訓練和預測
for epoch in range(num_epochs):
ppl, speed = train_epoch_ch8(
net, train_iter, loss, updater, device, use_random_iter)
if (epoch + 1) % 10 == 0:
# print(predict('你是?'))
# print(epoch)
# animator.add(epoch + 1, )
if epoch == 9:
# 清空圖表:使用空數組來替換現有內容
vis.line(X=np.array([0]), Y=np.array([0]), win='train_ch8', update='replace')
vis.line(
X=np.array([epoch + 1]),
Y=[ppl],
win='train_ch8',
update='append',
opts={
'title': 'train_ch8',
'xlabel': 'epoch',
'ylabel': 'ppl',
'linecolor': np.array([[0, 0, 255]]), # 藍色線條
}
)
print(f'困惑度 {ppl:.1f}, {speed:.1f} 詞元/秒 {str(device)}')
print(predict('你是'))
print(predict('我有一劍'))
if __name__ == '__main__':
batch_size, num_steps = 32, 35
train_iter, vocab = load_data_epoch(batch_size, num_steps)
vocab_size, num_hiddens, device = len(vocab), 256, try_gpu()
num_epochs, lr = 1000, 1
model = RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params, init_lstm_state, lstm)
# num_inputs = vocab_size
# lstm_layer = nn.LSTM(num_inputs, num_hiddens)
# model = RNNModel(lstm_layer, len(vocab), device)
# model = model.to(device)
print(predict_ch8('你是', 30, model, vocab, device))
train_ch8(model, train_iter, vocab, lr, num_epochs, device)
??我們分別使用手動構建的LSTM和框架構建的LSTM進行訓練和測試,結果如下:




??我們可以看到,模型未訓練和訓練后的對比,明顯訓練后的語句要通順一點。
后記
??綜合RNN和LSTM兩篇文章的結論來看,其對序列數據確實有一定的效果。
??此外,當前我們用RNN/LSTM做了序列數據的后續模擬生成工作,但是由于網絡深度、廣度的問題,其效果也就比在詞表中隨機抽取字組成的序列看起來要好點。
參考文獻
- https://zh.d2l.ai/chapter_recurrent-modern/lstm.html
- https://zh.d2l.ai/chapter_recurrent-neural-networks/rnn.html
- https://zh.d2l.ai/chapter_recurrent-neural-networks/text-preprocessing.html

PS: 請尊重原創,不喜勿噴。
PS: 要轉載請注明出處,本人版權所有。
PS: 有問題請留言,看到后我會第一時間回復。
浙公網安備 33010602011771號