<output id="qn6qe"></output>

    1. <output id="qn6qe"><tt id="qn6qe"></tt></output>
    2. <strike id="qn6qe"></strike>

      亚洲 日本 欧洲 欧美 视频,日韩中文字幕有码av,一本一道av中文字幕无码,国产线播放免费人成视频播放,人妻少妇偷人无码视频,日夜啪啪一区二区三区,国产尤物精品自在拍视频首页,久热这里只有精品12

      多卡的邏輯

      Great question. Let’s clarify the logic behind multi-GPU (multi-card) training (single server) and multi-server distributed training, as well as how data, gradients, and model aggregation are handled.


      1. Multi-GPU (Single Node) Training

      When you use multiple GPUs on a single server (e.g., 4 GPUs in one machine), the standard approach is data parallelism (PyTorch nn.DataParallel or DistributedDataParallel). Here’s the pipeline:

      Step-by-step Logic:

      1. Data Split:

        • In each batch, your data loader splits the batch into 4 mini-batches (one per GPU).
      2. Forward Pass (Parallel):

        • Each GPU receives its mini-batch and computes the forward pass independently.
      3. Backward Pass (Gradient Calculation):

        • Each GPU computes the gradients for its mini-batch locally.
      4. Gradient Synchronization (All-Reduce):

        • After computing local gradients, all GPUs synchronize their gradients (average or sum them across all GPUs).
        • This is often called all-reduce. After this, each GPU has the same, averaged gradients.
      5. Optimizer Step (Model Update):

        • Each GPU updates its local model parameters (which are now the same across GPUs).

      Summary:
      You do not aggregate models per se—you aggregate (average) gradients after backward, then update the models in sync.


      2. Multi-Node (Multi-Server) Distributed Training

      When you scale across multiple servers (each with 1 or more GPUs), the logic is similar but requires networking:

      Step-by-step Logic:

      1. Data Split:

        • The dataset is partitioned so that each server/GPU gets different data for each batch (no overlap).
      2. Forward/Backward Pass:

        • Each GPU (on each server) computes the forward and backward pass on its own mini-batch.
      3. Gradient Synchronization (All-Reduce Across Servers):

        • Gradients are synchronized across all GPUs on all servers (typically using NCCL, Gloo, or MPI).
        • This is network-intensive, so network speed matters.
      4. Optimizer Step:

        • Model parameters are updated after gradient averaging.

      Summary:
      The logic is the same—aggregate gradients, then update. Each model replica (across all GPUs, all servers) stays in sync.


      3. Other Strategies (Model Parallelism, Parameter Server)

      • Model Parallelism:
        Model is split across GPUs (not common for standard vision/NLP tasks, more for very large models).
      • Parameter Server:
        A central server collects and averages gradients (more common in older or asynchronous frameworks).

      4. Visual Diagram

      +----------+      +----------+      +----------+      +----------+
      |  GPU 0   |      |  GPU 1   |      |  GPU 2   |      |  GPU 3   |
      |  Data 0  |      |  Data 1  |      |  Data 2  |      |  Data 3  |
      +----------+      +----------+      +----------+      +----------+
           \                |                |                /
            \               |                |               /
                 (All-Reduce Gradient Sync)
                          |
                   (Each GPU now has same gradients)
                          |
                    (Optimizer Step: parameters updated)
      

      5. Summary Table

      Setting Data Distribution Gradient Sync Model Update
      Single Node Split across GPUs All-reduce across GPUs Locally on each GPU
      Multi-Node Split across servers All-reduce (network) Locally on each GPU
      Model Parallel Split across layers/parts N/A or custom N/A or custom

      Key Takeaway

      • Data is split. Each GPU computes forward/backward. Gradients are averaged (synchronized). Models are updated in sync.
      • You do NOT aggregate the models at the end of each step—you synchronize the gradients and keep the models in sync every step.

      If you want code examples or have a specific framework in mind (PyTorch, TensorFlow, etc.), let me know!

      posted @ 2025-06-10 14:13  GraphL  閱讀(45)  評論(0)    收藏  舉報
      主站蜘蛛池模板: 久久婷婷五月综合色一区二区| 无码中文av波多野结衣一区| 亚洲精品一区久久久久一品av| 成人亚欧欧美激情在线观看| 极品无码人妻巨屁股系列| 美女黄网站人色视频免费国产| 性色av极品无码专区亚洲| 亚洲十八禁一区二区三区| 老子午夜精品无码| 99久久99这里只有免费费精品 | 国产综合色产在线精品| 国内揄拍国内精品人妻久久| 亚洲欧洲中文日韩久久av乱码| 狼人大伊人久久一区二区| 欧美成人午夜精品免费福利| 亚洲精品不卡无码福利在线观看| 精品人妻系列无码人妻免费视频| 国产精品午夜无码AV天美传媒| 国产精品夫妇激情啪发布| 99热在线观看| 日本一区二区久久人妻高清| 在线日韩日本国产亚洲| 富平县| 国产专区一va亚洲v天堂| 亚洲日韩乱码一区二区三区四区| 国产人妻精品无码av在线| 国产av综合影院| 天堂网av最新版在线看| 镇远县| 亚洲乱码中文字幕小综合| 国产稚嫩高中生呻吟激情在线视频| 亚洲a∨国产av综合av下载| 久久爱在线视频在线观看| 高清国产美女一级a毛片在线| 国产精品亚洲二区在线看| 色偷一区国产精品| 亚洲人成电影网站色mp4| 文水县| 日本乱码在线看亚洲乱码| 人妻熟女av一区二区三区| 久久人人97超碰精品|