【CF434D】Nanami's Power Plant 最小割
【CF434D】Nanami's Power Plant
題意:有n個二次函數$y=a_ix^2+b_ix+c_i$($a_i,b_i,c_i$是整數),第i個函數要求x的取值在$[l_i,r_i]$之間且為整數。你需要確定每個函數的x的取值,使得所有函數的函數值之和最大。還有m個限制,每條限制形如$u,v,d$,表示$x_u\le x_v+d$。求最大函數值之和。
$n\le 50,m\le 100,-100\le l_i\le r_i\le 100$
題解:傻逼了連切糕都忘了。
對于一個方程,我們把它的所有可能取值按照x從小到大串成一串,首尾分別與S和T相連,其中第i個點和第i+1個點的邊的容量為當$x=l+i-1$時的函數值(由于可能存在負數,我們給每條邊的權值都加上一個大數,最后再把這個大數減去)。對于限制u,v,d,我們從u中所有代表$x_u=i$的點向v中代表$x_v=i-d$的點連一條容量inf的邊,便完成了限制。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
const ll big=1ll<<30;
const ll inf=1ll<<50;
int n,m,tot,S,T,cnt;
ll ans;
int L[60],R[60],to[200010],nxt[200010],head[12000],d[12000];
int p[60][210];
ll val[200010],A[60],B[60],C[60];
queue<int> q;
inline void add(int a,int b,ll c)
{
to[cnt]=b,val[cnt]=c,nxt[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,val[cnt]=0,nxt[cnt]=head[b],head[b]=cnt++;
}
ll dfs(int x,ll mf)
{
if(x==T) return mf;
int i;
ll temp=mf,k;
for(i=head[x];i!=-1;i=nxt[i]) if(val[i]&&d[to[i]]==d[x]+1)
{
k=dfs(to[i],min(temp,val[i]));
if(!k) d[to[i]]=-1;
temp-=k,val[i]-=k,val[i^1]+=k;
if(!temp) break;
}
return mf-temp;
}
inline int bfs()
{
while(!q.empty()) q.pop();
int i,u;
memset(d,0,sizeof(d));
q.push(S),d[S]=1;
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=nxt[i]) if(val[i]&&!d[to[i]])
{
d[to[i]]=d[u]+1;
if(to[i]==T) return 1;
q.push(to[i]);
}
}
return 0;
}
int main()
{
//freopen("cf434D.in","r",stdin);
scanf("%d%d",&n,&m);
S=0,T=tot=1;
int i,j,a,b,c;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++) scanf("%lld%lld%lld",&A[i],&B[i],&C[i]);
for(i=1;i<=n;i++)
{
scanf("%d%d",&L[i],&R[i]);
add(S,tot+1,inf);
for(j=L[i];j<=R[i];j++)
{
p[i][j-L[i]]=++tot;
add(tot,tot+1,big-(A[i]*j*j+B[i]*j+C[i]));
}
p[i][R[i]-L[i]+1]=++tot;
add(tot,T,inf);
}
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
for(j=max(L[b],L[a]-c);j<=min(R[b],R[a]-c)+1;j++)
{
add(p[a][j+c-L[a]],p[b][j-L[b]],inf);
}
}
while(bfs()) ans+=dfs(S,inf);
printf("%lld",big*n-ans);
return 0;
}
| 歡迎來原網站坐坐! >原文鏈接<

浙公網安備 33010602011771號