<output id="qn6qe"></output>

    1. <output id="qn6qe"><tt id="qn6qe"></tt></output>
    2. <strike id="qn6qe"></strike>

      亚洲 日本 欧洲 欧美 视频,日韩中文字幕有码av,一本一道av中文字幕无码,国产线播放免费人成视频播放,人妻少妇偷人无码视频,日夜啪啪一区二区三区,国产尤物精品自在拍视频首页,久热这里只有精品12

      python:時(shí)間序列的處理

      Table of Contents

      import pandas as pd
      import numpy as np
      from sklearn.preprocessing import OneHotEncoder
      

      時(shí)間(戳)的格式化

      data=pd.read_csv(r"D:\downloads\tempo使用1.csv",encoding='gbk')
      data.head()
      
      SYS_NAME CWXT_DB184C COLLECTTIME
      0 財(cái)務(wù)管理系統(tǒng) 34270787.33 2014-10-01
      1 財(cái)務(wù)管理系統(tǒng) 34328899.02 2014-10-02
      2 財(cái)務(wù)管理系統(tǒng) 34327553.50 2014-10-03
      3 財(cái)務(wù)管理系統(tǒng) 34288672.21 2014-10-04
      4 財(cái)務(wù)管理系統(tǒng) 34190978.41 2014-10-05
      pd.to_datetime(data['COLLECTTIME'])[0]
      
      Timestamp('2014-10-01 00:00:00')
      
      data['date']=pd.to_datetime(data['COLLECTTIME'],format="%Y-%m-%d")#數(shù)據(jù)格式化輸出
      data.head()
      
      SYS_NAME CWXT_DB184C COLLECTTIME date
      0 財(cái)務(wù)管理系統(tǒng) 34270787.33 2014-10-01 2014-10-01
      1 財(cái)務(wù)管理系統(tǒng) 34328899.02 2014-10-02 2014-10-02
      2 財(cái)務(wù)管理系統(tǒng) 34327553.50 2014-10-03 2014-10-03
      3 財(cái)務(wù)管理系統(tǒng) 34288672.21 2014-10-04 2014-10-04
      4 財(cái)務(wù)管理系統(tǒng) 34190978.41 2014-10-05 2014-10-05

      提取時(shí)間特征:年、月、日、季度等

      data['quarter']=data['date'].dt.quarter#提取季度
      data.head()
      
      SYS_NAME CWXT_DB184C COLLECTTIME date quarter
      0 財(cái)務(wù)管理系統(tǒng) 34270787.33 2014-10-01 2014-10-01 4
      1 財(cái)務(wù)管理系統(tǒng) 34328899.02 2014-10-02 2014-10-02 4
      2 財(cái)務(wù)管理系統(tǒng) 34327553.50 2014-10-03 2014-10-03 4
      3 財(cái)務(wù)管理系統(tǒng) 34288672.21 2014-10-04 2014-10-04 4
      4 財(cái)務(wù)管理系統(tǒng) 34190978.41 2014-10-05 2014-10-05 4
      data['month'],data['day']=data['date'].dt.month,data['date'].dt.day#提取月、天
      data.head()
      
      SYS_NAME CWXT_DB184C COLLECTTIME date quarter month day
      0 財(cái)務(wù)管理系統(tǒng) 34270787.33 2014-10-01 2014-10-01 4 10 1
      1 財(cái)務(wù)管理系統(tǒng) 34328899.02 2014-10-02 2014-10-02 4 10 2
      2 財(cái)務(wù)管理系統(tǒng) 34327553.50 2014-10-03 2014-10-03 4 10 3
      3 財(cái)務(wù)管理系統(tǒng) 34288672.21 2014-10-04 2014-10-04 4 10 4
      4 財(cái)務(wù)管理系統(tǒng) 34190978.41 2014-10-05 2014-10-05 4 10 5
      data['dayofweek']=data['date'].dt.dayofweek#一周內(nèi)的第幾天
      
      data['weekofyear']=data['date'].dt.week#一年中的第幾周
      data.head()
      
      SYS_NAME CWXT_DB184C COLLECTTIME date quarter month day dayofweek weekofyear
      0 財(cái)務(wù)管理系統(tǒng) 34270787.33 2014-10-01 2014-10-01 4 10 1 2 40
      1 財(cái)務(wù)管理系統(tǒng) 34328899.02 2014-10-02 2014-10-02 4 10 2 3 40
      2 財(cái)務(wù)管理系統(tǒng) 34327553.50 2014-10-03 2014-10-03 4 10 3 4 40
      3 財(cái)務(wù)管理系統(tǒng) 34288672.21 2014-10-04 2014-10-04 4 10 4 5 40
      4 財(cái)務(wù)管理系統(tǒng) 34190978.41 2014-10-05 2014-10-05 4 10 5 6 40
      a=pd.to_datetime('2020-1-1')
      

      判斷開(kāi)始、結(jié)束

      #判斷開(kāi)始、結(jié)束
      print(a.is_year_end,
      a.is_year_start,
      a.is_month_end,
      a.is_month_start,
      a.is_quarter_start,
      a.is_quarter_end)
      
      False True False True True False
      
      data['hour']=data['date'].dt.hour
      data.head()
      
      SYS_NAME CWXT_DB184C COLLECTTIME date quarter month day dayofweek weekofyear hour
      0 財(cái)務(wù)管理系統(tǒng) 34270787.33 2014-10-01 2014-10-01 4 10 1 2 40 0
      1 財(cái)務(wù)管理系統(tǒng) 34328899.02 2014-10-02 2014-10-02 4 10 2 3 40 0
      2 財(cái)務(wù)管理系統(tǒng) 34327553.50 2014-10-03 2014-10-03 4 10 3 4 40 0
      3 財(cái)務(wù)管理系統(tǒng) 34288672.21 2014-10-04 2014-10-04 4 10 4 5 40 0
      4 財(cái)務(wù)管理系統(tǒng) 34190978.41 2014-10-05 2014-10-05 4 10 5 6 40 0

      判斷是否是一天的高峰時(shí)段

      #是否是一天的高峰時(shí)段
      data['day_hign']=data['hour'].apply(lambda x:0 if 0<=x<8 else 1)
      data.head()
      
      SYS_NAME CWXT_DB184C COLLECTTIME date quarter month day dayofweek weekofyear hour day_hign
      0 財(cái)務(wù)管理系統(tǒng) 34270787.33 2014-10-01 2014-10-01 4 10 1 2 40 0 0
      1 財(cái)務(wù)管理系統(tǒng) 34328899.02 2014-10-02 2014-10-02 4 10 2 3 40 0 0
      2 財(cái)務(wù)管理系統(tǒng) 34327553.50 2014-10-03 2014-10-03 4 10 3 4 40 0 0
      3 財(cái)務(wù)管理系統(tǒng) 34288672.21 2014-10-04 2014-10-04 4 10 4 5 40 0 0
      4 財(cái)務(wù)管理系統(tǒng) 34190978.41 2014-10-05 2014-10-05 4 10 5 6 40 0 0

      構(gòu)造時(shí)間特征

      #構(gòu)造過(guò)去n天的統(tǒng)計(jì)數(shù)據(jù)
      def get_statis_n_days_num(data,col,n):
          temp=pd.DataFrame()
          for i in range(n):
              temp=pd.concat([temp,data[col].shift((i+1)*24)],axis=1)
              data['avg_'+str(n)+"_days_"+col]=temp.mean(axis=1)
              data['median_'+str(n)+"days"+col]=temp.median(axis=1)
              data['max_'+str(n)+"_days_"+col]=temp.max(axis=1)
              data['min_'+str(n)+"_days_"+col]=temp.min(axis=1)
              data['std'+str(n)+"_days_"+col]=temp.std(axis=1)
          return data
      
      get_statis_n_days_num(data,'CWXT_DB184C',n=7).tail()
      
      d:\software\python\lib\site-packages\numpy\lib\nanfunctions.py:1114: RuntimeWarning: All-NaN slice encountered
        overwrite_input=overwrite_input)
      
      SYS_NAME CWXT_DB184C COLLECTTIME date quarter month day dayofweek weekofyear hour day_hign avg_7_days_CWXT_DB184C median_7daysCWXT_DB184C max_7_days_CWXT_DB184C min_7_days_CWXT_DB184C std7_days_CWXT_DB184C
      36 財(cái)務(wù)管理系統(tǒng) 35606941.11 2014-11-06 2014-11-06 4 11 6 3 45 0 0 34328674.80 34328674.80 34328674.80 34328674.80 NaN
      37 財(cái)務(wù)管理系統(tǒng) 35546714.13 2014-11-07 2014-11-07 4 11 7 4 45 0 0 34234933.61 34234933.61 34234933.61 34234933.61 NaN
      38 財(cái)務(wù)管理系統(tǒng) 35510966.73 2014-11-08 2014-11-08 4 11 8 5 45 0 0 34022726.41 34022726.41 34022726.41 34022726.41 NaN
      39 財(cái)務(wù)管理系統(tǒng) 35491498.51 2014-11-09 2014-11-09 4 11 9 6 45 0 0 35016309.47 35016309.47 35016309.47 35016309.47 NaN
      40 財(cái)務(wù)管理系統(tǒng) 35601990.55 2014-11-10 2014-11-10 4 11 10 0 46 0 0 34981412.82 34981412.82 34981412.82 34981412.82 NaN

      時(shí)間差及其轉(zhuǎn)換

      a=pd.to_datetime('2020-07-21 12:12:01')
      b=pd.to_datetime('2020-07-20 12:12:23')
      c=pd.to_datetime('2020-07-21 00:12:01')
      d=pd.to_datetime('2020-07-21 01:00:01')
      
      a-b#計(jì)算時(shí)間差
      
      Timedelta('0 days 23:59:38')
      
      (a-c)
      
      Timedelta('0 days 12:00:00')
      
      #將時(shí)間差,轉(zhuǎn)換成秒
      (a-c).seconds
      
      43200
      
      (d-c).seconds
      
      2880
      
      # 跨天轉(zhuǎn)化秒時(shí)容易出錯(cuò)
      (a-b).seconds
      
      86378
      
      def calTimesDiff(t1, t2):
          """
          計(jì)算時(shí)間戳之間的差值,單位h(同一天)
          :param t1:
          :param t2:
          :return:
          """
          # 1.先轉(zhuǎn)成秒
          # 2.再將秒轉(zhuǎn)換成小時(shí)
          t1_seconds = str(t1).split()[-1].split(":")
          t1_seconds = sum([int(i) * 60 ** (2 - num) for num, i in enumerate(t1_seconds)])
      
          t2_seconds = str(t2).split()[-1].split(":")
          t2_seconds = sum([int(i) * 60 ** (2 - num) for num, i in enumerate(t2_seconds)])
          return abs(round((t2_seconds - t1_seconds) / 3600, 3))
      
      calTimesDiff(d,c)
      
      0.8
      
      a-b#計(jì)算時(shí)間差
      
      Timedelta('0 days 23:59:38')
      
      #將a-b轉(zhuǎn)換成小時(shí)
      
      def convertTimestampToSec(a_b):
          """
          將時(shí)間差轉(zhuǎn)換成秒
          """
          a_b_str=str(a_b).split()
          day=int(a_b_str[0])
          sec=sum([int(i)*60**(2-num) for num,i in enumerate(a_b_str[-1].split(":"))])
          res=day*24*3600+sec
          return res
      
      convertTimestampToSec(a-b)#23*3600+59*60+38
      
      86378
      

      時(shí)間的前進(jìn)與后退

      pd.Timedelta
      help(pd.Timedelta)
      
      class Timedelta(_Timedelta)
       |  Represents a duration, the difference between two dates or times.
       |  
       |  Timedelta is the pandas equivalent of python's ``datetime.timedelta``
       |  and is interchangeable with it in most cases.
       |  
       |  Parameters
       |  ----------
       |  value : Timedelta, timedelta, np.timedelta64, string, or integer
       |  unit : str, default 'ns'
       |      Denote the unit of the input, if input is an integer.
       |  
       |      Possible values:
       |  
       |      * 'Y', 'M', 'W', 'D', 'T', 'S', 'L', 'U', or 'N'
       |      * 'days' or 'day'
       |      * 'hours', 'hour', 'hr', or 'h'
       |      * 'minutes', 'minute', 'min', or 'm'
       |      * 'seconds', 'second', or 'sec'
       |      * 'milliseconds', 'millisecond', 'millis', or 'milli'
       |      * 'microseconds', 'microsecond', 'micros', or 'micro'
       |      * 'nanoseconds', 'nanosecond', 'nanos', 'nano', or 'ns'.
      
      a+pd.Timedelta(2,unit='days')
      
      Timestamp('2020-07-23 12:12:01')
      
      a+pd.Timedelta(2,unit='m')
      
      Timestamp('2020-07-21 12:14:01')
      
      pd.DateOffset
      
      help(pd.DateOffset)`也具有的類似的功能:但是需要注意關(guān)鍵詞單復(fù)數(shù)的區(qū)別:
      
      Parameters that **add** to the offset (like Timedelta):
       |  
       |      - years
       |      - months
       |      - weeks
       |      - days
       |      - hours
       |      - minutes
       |      - seconds
       |      - microseconds
       |      - nanoseconds
       |  
      Parameters that **replace** the offset value:
       |  
       |      - year
       |      - month
       |      - day
       |      - weekday
       |      - hour
       |      - minute
       |      - second
       |      - microsecond
       |      - nanosecond.
          
      
      a+pd.DateOffset(days=1)
      
      Timestamp('2020-07-22 12:12:01')
      
      b+pd.DateOffset(day=1)
      
      Timestamp('2020-07-01 12:12:23')
      
      posted @ 2020-08-30 13:02  LgRun  閱讀(337)  評(píng)論(0)    收藏  舉報(bào)
      主站蜘蛛池模板: 亚洲精品色一区二区三区| 四虎永久免费精品视频| 婷婷综合亚洲| 色综合天天综合天天综| 自拍偷亚洲产在线观看| 精品亚洲欧美高清不卡高清| 欧美精品亚洲精品日韩专| 18禁成人免费无码网站| 精品久久人人做爽综合| 国产精品综合av一区二区| 国产精品午夜福利片国产| 欧美高清一区三区在线专区| 中文区中文字幕免费看| 9久9久热精品视频在线观看 | 福利一区二区不卡国产| 精品成在人线av无码免费看| 7878成人国产在线观看| 青青草无码免费一二三区| 人妻精品动漫h无码| 天堂av网一区二区三区| 国产精品国产亚洲区久久| 久久影院午夜伦手机不四虎卡| 亚洲午夜无码久久久久蜜臀av | 青草精品国产福利在线视频| 鲁一鲁一鲁一鲁一澡| 日本高清在线观看WWW色| 97色成人综合网站| 这里只有精品在线播放| 久久国产精品精品国产色婷婷| 国产一区二区三区内射高清| 日韩无人区码卡1卡2卡| 亚洲高清av一区二区| 1精品啪国产在线观看免费牛牛| 狠狠色婷婷久久综合频道日韩 | 国产人妻精品午夜福利免费| 国产不卡一区二区精品| 精品国产亚洲第一区二区三区| 午夜成人理论无码电影在线播放| 亚洲一区二区偷拍精品| 精品无码国产日韩制服丝袜| 久久久久久久久18禁秘|