<output id="qn6qe"></output>

    1. <output id="qn6qe"><tt id="qn6qe"></tt></output>
    2. <strike id="qn6qe"></strike>

      亚洲 日本 欧洲 欧美 视频,日韩中文字幕有码av,一本一道av中文字幕无码,国产线播放免费人成视频播放,人妻少妇偷人无码视频,日夜啪啪一区二区三区,国产尤物精品自在拍视频首页,久热这里只有精品12

      Group Theory (I)

      1 Groups

      1.1 Definition and Basic Terms

      Given a set with a binary operation $ (G,\cdot) $, if it satisfies:

      • Closure: for all $ a,b\in G $, $ a\cdot b\in G $;
      • Associativity: for all $ a,b,c\in G $, $ (a\cdot b)\cdot c=a\cdot(b\cdot c) $;
      • Identity: there exists $ e\in G $ such that for all $ a\in G $, $ e\cdot a=a\cdot e=a $;
      • Inverse: for every $ a\in G $ there exists $ a^{-1}\in G $ with $ a\cdot a{-1}=a\cdot a=e $,

      then $ (G,\cdot) $ is a group.
      The order of a group is the number of its elements.

      • With only closure + associativity, the structure is a semigroup.
      • We often call $ G $ the underlying set, and $ (G,+) $ or $ (G,\cdot) $ the group.

      1.2 Abelian Groups

      If in addition commutativity holds, i.e., $ a\cdot b=b\cdot a $ for all $ a,b\in G $, then $ (G,\cdot) $ is abelian.

      1.3 Cyclic Groups

      A cyclic group is generated by one element; all cyclic groups are abelian.

      Notation example: $ f^k $ means $ \underbrace{f\cdots f}_{k} $.
      Caution. In a cyclic group, elements commute because they are powers of the same generator (hence reduce to addition of exponents), not merely because of associativity.

      1.4 Subgroups and Normal Subgroups

      A subgroup is a subset of $ G $ that itself forms a group under the same operation.

      A normal subgroup $ N\trianglelefteq G $ is defined by

      \[gNg^{-1}=N,\quad \forall\, g\in G. \]

      Define the left coset of $ N $ by $ gN $ and the right coset by $ Ng $.
      Normality can be understood as “left cosets = right cosets (for all $ g $)”, which ensures the quotient’s operation is well-defined.

      • In abelian groups, every subgroup is normal.
      • Normal subgroups are well-defined substructures of a group.

      1.5 Quotient Groups

      The elements of a quotient group are the cosets of a normal subgroup $ N $.
      Example for the additive group $ \mathbb Z $:

      \[\mathbb Z/n\mathbb Z=\{\,0+n\mathbb Z,\,1+n\mathbb Z,\,\dots,\,(n-1)+n\mathbb Z\,\}. \]

      It is also common to write, using representatives,

      \[\mathbb Z/n\mathbb Z=\{\,0,1,\dots,n-1\,\}. \]

      • Quotient groups are not subgroups, the role of subgroups and quotient groups couldn't be swapped.
      • The representatives are also called equivalence class.

      1.6 Simple Groups

      A simple group is a nontrivial group with no normal subgroups other than the identity subgroup and itself. They play a role analogous to primes in arithmetic.

      1.7 Symmetric and Alternating Groups

      Example:

      \[S_3=\{\,e,(12),(13),(23),(123),(132)\,\}, \]

      where $ (123) $ means $ 1\mapsto2,\ 2\mapsto3,\ 3\mapsto1 $.
      The symmetric group has order $ n! $, and the alternating group has order $ \dfrac{n!}{2} $.

      The alternating group consists of even permutations (while the symmetric group contains both odd and even permutations).

      Example:

      \[A_4=\{\,e,\ (123),(132),(124),(142),(134),(143),(234),(243),\ (12)(34),(13)(24),(14)(23)\,\}. \]

      Note that $ (12)(34) $ means apply $ (34) $ first and then $ (12) $.
      Alternating groups are different from cyclic groups.

      1.8 Matrix Groups

      • General Linear Group

        \[GL_n(\mathbb R)=\{\,A\in M_{n\times n}(\mathbb R):\det(A)\neq 0\,\}. \]

        If $ \det(A)=0 $, the linear map is not invertible.

      • Special Linear Group

        \[SL_n(\mathbb R)=\{\,A\in GL_n(\mathbb R):\det(A)=1\,\}, \]

        which preserves volume.

      • Orthogonal Group

        \[O(n)=\{\,A\in GL_n(\mathbb R):A^\top A=I\,\}. \]

        Orthogonality means columns/rows are orthonormal; geometrically these are rotations and reflections.
        A matrix is often viewed as a collection of column vectors.

      1.9 Lie Groups

      A Lie group is a group that is also a smooth manifold.


      2 \(\sigma\)-Algebra

      Let $ X $ be a set. A $ \sigma $-algebra $ \mathcal F\subseteq \mathcal P(X) $ satisfies:

      1. Contains the whole space:

        \[X\in\mathcal F. \]

      2. Closed under complementation: if $ A\in\mathcal F $, then

        \[X\setminus A\in\mathcal F. \]

      3. Closed under countable unions: if $ A_1,A_2,\dots\in\mathcal F $, then

        \[\bigcup_{i=1}^\infty A_i\in\mathcal F. \]

      Notes:

      • A (set) algebra only requires closure under finite unions (countable may be infinite), hence is weaker than a $ \sigma $-algebra.
      • We also use \(\sigma\)-field as a synonym for $ \sigma $-algebra.

      Example/Counterexample. Consider

      \[\left(0,1-\frac1n\right],\quad n=1,2,\dots \]

      If $ \mathcal F $ contains all sets of the form $ (\cdot,\cdot] $ of this type only, then

      \[\bigcup_{n=1}^\infty\left(0,1-\frac1n\right]=(0,1), \]

      and $ (0,1) $ is not in that class, so this is not a $ \sigma $-algebra.


      3 Rings and Fields

      3.1 Rings

      A ring is a set $ R $ with two operations (addition and multiplication) such that:

      • $ (R,+) $ is an abelian group;
      • multiplication on $ R $ is associative;
      • distributive laws hold.

      If multiplication is commutative, $ R $ is a commutative ring.
      If there is a multiplicative identity, it is often called unity.

      3.2 Fields and Examples

      If $ (R,\cdot) $ with unity is commutative and $ R\setminus{0} $ forms an abelian group under multiplication (i.e., every nonzero element has a multiplicative inverse), then $ R $ is a field.

      Example:

      \[\mathbb Z_6\ \text{is not a field, since }2\cdot ?\not\equiv 1\pmod 6. \]

      However, $ \mathbb Z_p $ is a field when $ p $ is prime.

      (Heuristically, one often categorizes algebraic structures into “group-like” and “ring/field-like”.)

      3.3 Polynomial Rings

      For a ring $ R $, define the polynomial ring $ R[x] $:

      \[f(x)=a_0+a_1x+\cdots+a_nx^n,\qquad a_i\in R. \]

      Example:

      \[\mathbb Z[x]\ \text{is the ring of polynomials with integer coefficients.} \]

      3.4 Ideals

      Ideals play the role in rings analogous to normal subgroups in groups: they are the right substructures for forming quotient rings.

      • Quotient rings are made of cosets of an ideal.
      • Ideals are well-defined substructures of a ring.

      Notation reminder: $ N\trianglelefteq G $ for normal subgroups, while $ I\subseteq R $ for ideals.

      3.5 Quotient Rings

      For polynomials, write

      \[f(x)\equiv g(x)\pmod{h(x)} \]

      to mean $ h(x)\mid (f(x)-g(x)) $.

      In $ \mathbb Z_2[x] $, let

      \[f(x)=x^2+x+1. \]

      Then

      \[x^2\equiv -x-1\pmod{f(x)}. \]

      Since in $ \mathbb Z_2 $ we have $ -x=x $ and $ -1=1 $,

      \[x^2\equiv x+1\pmod{f(x)}. \]

      Hence every polynomial can be reduced to a linear representative $ a+bx $. Therefore

      \[\mathbb Z_2[x]/(f(x))=\{\,0,\,1,\,x,\,x+1\,\}. \]

      In general, the size formula is

      \[\#\bigl(\mathbb Z_p[x]/(f(x))\bigr)=p^{\deg f}. \]

      3.6 Galois Fields

      We denote finite fields by $ GF(p) $ (for prime $ p $), and more generally $ GF(p^n) $.

      • $ GF(p^n) $ has $ p^n $ elements (this is called field extension).
      • For $ GF(2^n) $ specifically:
        • Addition equals bitwise XOR;
        • Addition equals subtraction (since $ 1=-1 $).

      An important equality:

      \[GF(p^n)=\dfrac{\mathbb Z_p[x]}{f(x)} \]

      \[f(x)\text{ is the irreducible polynomial in }\mathbb Z_p \]

      Irreducible polynomials may not be unique, but the extended field must be isomorphism to each other.


      4 Crypto

      This section especially points to RSA, where groups/rings/fields and modular arithmetic are central.


      5 Pólya’s Enumeration Theorem

      Especially useful for coloring and other combinatorial counting problems under group actions.

      posted @ 2025-10-01 06:10  rainrzk  閱讀(3)  評論(0)    收藏  舉報
      主站蜘蛛池模板: 成人午夜视频一区二区无码| 99热成人精品热久久66| 和平县| 性色av不卡一区二区三区| 国产免费午夜福利在线观看| 99久久国产综合精品成人影院| 91在线国内在线播放老师| 久久综合亚洲色一区二区三区| 性xxxx搡xxxxx搡欧美| 成人午夜在线观看日韩| 男人的天堂av一二三区| 亚洲中文字幕第二十三页| 国产精品揄拍一区二区久久| 国产11一12周岁女毛片| XXXXXHD亚洲日本HD| 任我爽精品视频在线播放| 巨胸不知火舞露双奶头无遮挡| 久久精品国产蜜臀av| 成人嫩草研究院久久久精品| 丰满人妻被黑人连续中出| 日本中文字幕有码在线视频| 国产精品疯狂输出jk草莓视频| 四虎精品国产永久在线观看| 小污女小欲女导航| 亚洲 制服 丝袜 无码| 国产精品久久久久aaaa| 国产黄色三级三级看三级| 国产人妻无码一区二区三区18| 国产精品中文字幕日韩| 国产精品亚洲欧美大片在线看| 台湾佬自拍偷区亚洲综合| 久久月本道色综合久久| 99噜噜噜在线播放| 精品久久精品久久精品九九| 欧美另类精品xxxx人妖| 成年女人永久免费观看视频| 日韩精品一区二区三区日韩| 欧洲中文字幕国产精品| 国产日韩一区二区三区在线观看| 啦啦啦视频在线日韩精品| 国产精品一区中文字幕|